基于子空间技术的多变量线性变参系统辨识

Vincent Verdult, M. Verhaegen
{"title":"基于子空间技术的多变量线性变参系统辨识","authors":"Vincent Verdult, M. Verhaegen","doi":"10.1109/CDC.2000.912083","DOIUrl":null,"url":null,"abstract":"Presents a subspace type of identification method for multivariable linear parameter-varying systems in state space representation with affine parameter dependence. It is shown that a major problem with subspace methods for this kind of systems is the enormous dimensions of the data matrices involved. To overcome the curse of dimensionality, we suggest to use only the most dominant rows of the data matrices in estimating the model. An efficient selection algorithm is discussed that does not require the formation of the complete data matrices, but can process them row by row.","PeriodicalId":217237,"journal":{"name":"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Identification of multivariable linear parameter-varying systems based on subspace techniques\",\"authors\":\"Vincent Verdult, M. Verhaegen\",\"doi\":\"10.1109/CDC.2000.912083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents a subspace type of identification method for multivariable linear parameter-varying systems in state space representation with affine parameter dependence. It is shown that a major problem with subspace methods for this kind of systems is the enormous dimensions of the data matrices involved. To overcome the curse of dimensionality, we suggest to use only the most dominant rows of the data matrices in estimating the model. An efficient selection algorithm is discussed that does not require the formation of the complete data matrices, but can process them row by row.\",\"PeriodicalId\":217237,\"journal\":{\"name\":\"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2000.912083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2000.912083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

提出了一种具有仿射参数依赖的多变量线性变参系统状态空间表示的子空间型辨识方法。结果表明,这类系统的子空间方法的一个主要问题是所涉及的数据矩阵的巨大维度。为了克服维度的诅咒,我们建议在估计模型时只使用数据矩阵中最主要的行。讨论了一种不需要形成完整的数据矩阵,但可以逐行处理的高效选择算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of multivariable linear parameter-varying systems based on subspace techniques
Presents a subspace type of identification method for multivariable linear parameter-varying systems in state space representation with affine parameter dependence. It is shown that a major problem with subspace methods for this kind of systems is the enormous dimensions of the data matrices involved. To overcome the curse of dimensionality, we suggest to use only the most dominant rows of the data matrices in estimating the model. An efficient selection algorithm is discussed that does not require the formation of the complete data matrices, but can process them row by row.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信