{"title":"基于WSVM-HMM分类的智能手机活动识别","authors":"M. Abidine, B. Fergani","doi":"10.4018/ijehmc.20211101.oa11","DOIUrl":null,"url":null,"abstract":"A lot of real-life mobile sensing applications are becoming available nowadays. The traditional approach for activity recognition employs machine learning algorithms to learn from collected data from smartphpne and induce a model. The model generation is usually performed offline on a server system and later deployed to the phone for activity recognition. In this paper, we propose a new hybrid classification model to perform automatic recognition of activities using built-in embedded sensors present in smartphones. The proposed method uses a trick to classify the ongoing activity by combining Weighted Support Vector Machines (WSVM) model and Hidden Markov Model (HMM) model. The sensory inputs to the classifier are reduced with the Linear Discriminant Analysis (LDA). We demonstrate how to train the hybrid approach in this setting, introduce an adaptive regularization parameter for WSVM approach, and illustrate how our proposed method outperforms the state-of-the-art on a large benchmark dataset.","PeriodicalId":375617,"journal":{"name":"Int. J. E Health Medical Commun.","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activity Recognition From Smartphone Data Using WSVM-HMM Classification\",\"authors\":\"M. Abidine, B. Fergani\",\"doi\":\"10.4018/ijehmc.20211101.oa11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A lot of real-life mobile sensing applications are becoming available nowadays. The traditional approach for activity recognition employs machine learning algorithms to learn from collected data from smartphpne and induce a model. The model generation is usually performed offline on a server system and later deployed to the phone for activity recognition. In this paper, we propose a new hybrid classification model to perform automatic recognition of activities using built-in embedded sensors present in smartphones. The proposed method uses a trick to classify the ongoing activity by combining Weighted Support Vector Machines (WSVM) model and Hidden Markov Model (HMM) model. The sensory inputs to the classifier are reduced with the Linear Discriminant Analysis (LDA). We demonstrate how to train the hybrid approach in this setting, introduce an adaptive regularization parameter for WSVM approach, and illustrate how our proposed method outperforms the state-of-the-art on a large benchmark dataset.\",\"PeriodicalId\":375617,\"journal\":{\"name\":\"Int. J. E Health Medical Commun.\",\"volume\":\"247 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. E Health Medical Commun.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijehmc.20211101.oa11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. E Health Medical Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijehmc.20211101.oa11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Activity Recognition From Smartphone Data Using WSVM-HMM Classification
A lot of real-life mobile sensing applications are becoming available nowadays. The traditional approach for activity recognition employs machine learning algorithms to learn from collected data from smartphpne and induce a model. The model generation is usually performed offline on a server system and later deployed to the phone for activity recognition. In this paper, we propose a new hybrid classification model to perform automatic recognition of activities using built-in embedded sensors present in smartphones. The proposed method uses a trick to classify the ongoing activity by combining Weighted Support Vector Machines (WSVM) model and Hidden Markov Model (HMM) model. The sensory inputs to the classifier are reduced with the Linear Discriminant Analysis (LDA). We demonstrate how to train the hybrid approach in this setting, introduce an adaptive regularization parameter for WSVM approach, and illustrate how our proposed method outperforms the state-of-the-art on a large benchmark dataset.