管理信息提取:现状与研究方向

A. Doan, R. Ramakrishnan, Shivakumar Vaithyanathan
{"title":"管理信息提取:现状与研究方向","authors":"A. Doan, R. Ramakrishnan, Shivakumar Vaithyanathan","doi":"10.1145/1142473.1142595","DOIUrl":null,"url":null,"abstract":"This tutorial makes the case for developing a unified framework that manages information extraction from unstructured data (focusing in particular on text). We first survey research on information extraction in the database, AI, NLP, IR, and Web communities in recent years. Then we discuss why this is the right time for the database community to actively participate and address the problem of managing information extraction (including in particular the challenges of maintaining and querying the extracted information, and accounting for the imprecision and uncertainty inherent in the extraction process). Finally, we show how interested researchers can take the next step, by pointing to open problems, available datasets, applicable standards, and software tools. We do not assume prior knowledge of text management, NLP, extraction techniques, or machine learning.","PeriodicalId":416090,"journal":{"name":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"Managing information extraction: state of the art and research directions\",\"authors\":\"A. Doan, R. Ramakrishnan, Shivakumar Vaithyanathan\",\"doi\":\"10.1145/1142473.1142595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This tutorial makes the case for developing a unified framework that manages information extraction from unstructured data (focusing in particular on text). We first survey research on information extraction in the database, AI, NLP, IR, and Web communities in recent years. Then we discuss why this is the right time for the database community to actively participate and address the problem of managing information extraction (including in particular the challenges of maintaining and querying the extracted information, and accounting for the imprecision and uncertainty inherent in the extraction process). Finally, we show how interested researchers can take the next step, by pointing to open problems, available datasets, applicable standards, and software tools. We do not assume prior knowledge of text management, NLP, extraction techniques, or machine learning.\",\"PeriodicalId\":416090,\"journal\":{\"name\":\"Proceedings of the 2006 ACM SIGMOD international conference on Management of data\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2006 ACM SIGMOD international conference on Management of data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1142473.1142595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1142473.1142595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

摘要

本教程介绍如何开发一个统一的框架来管理从非结构化数据(特别关注文本)中提取信息。本文首先综述了近年来在数据库、AI、NLP、IR和Web社区等方面的信息提取研究。然后,我们讨论为什么现在是数据库社区积极参与和解决管理信息提取问题的合适时机(特别是包括维护和查询提取的信息的挑战,以及考虑提取过程中固有的不精确和不确定性)。最后,我们通过指出开放的问题、可用的数据集、适用的标准和软件工具,展示了感兴趣的研究人员如何采取下一步行动。我们不假设有文本管理、自然语言处理、提取技术或机器学习的先验知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Managing information extraction: state of the art and research directions
This tutorial makes the case for developing a unified framework that manages information extraction from unstructured data (focusing in particular on text). We first survey research on information extraction in the database, AI, NLP, IR, and Web communities in recent years. Then we discuss why this is the right time for the database community to actively participate and address the problem of managing information extraction (including in particular the challenges of maintaining and querying the extracted information, and accounting for the imprecision and uncertainty inherent in the extraction process). Finally, we show how interested researchers can take the next step, by pointing to open problems, available datasets, applicable standards, and software tools. We do not assume prior knowledge of text management, NLP, extraction techniques, or machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信