闵可夫斯基平面,共焦圆锥和台球

V. Dragović, M. Radnović
{"title":"闵可夫斯基平面,共焦圆锥和台球","authors":"V. Dragović, M. Radnović","doi":"10.2298/PIM1308017D","DOIUrl":null,"url":null,"abstract":"Geometry of confocal conics in the Minkowski plane and related billiard \n dynamics are studied in details. Periodic trajectories are described and \n several new examples are presented. Topological properties of the elliptical \n billiards are analyzed and the results are formulated in the terms of the \n Fomenko graphs. [Projekat Ministarstva nauke Republike Srbije, br. 174020: \n Geometry and Topology of Manifolds and Integrable Dynamical Systems]","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Minkowski plane, confocal conics, and billiards\",\"authors\":\"V. Dragović, M. Radnović\",\"doi\":\"10.2298/PIM1308017D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geometry of confocal conics in the Minkowski plane and related billiard \\n dynamics are studied in details. Periodic trajectories are described and \\n several new examples are presented. Topological properties of the elliptical \\n billiards are analyzed and the results are formulated in the terms of the \\n Fomenko graphs. [Projekat Ministarstva nauke Republike Srbije, br. 174020: \\n Geometry and Topology of Manifolds and Integrable Dynamical Systems]\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM1308017D\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1308017D","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

详细研究了闵可夫斯基平面上的共焦圆锥几何及相关的台球动力学。描述了周期轨迹,并给出了几个新的例子。分析了椭圆台球的拓扑性质,并用Fomenko图表示了结果。[南斯拉夫]塞族共和国部长项目;[174020]流形与可积动力系统的几何与拓扑[j]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minkowski plane, confocal conics, and billiards
Geometry of confocal conics in the Minkowski plane and related billiard dynamics are studied in details. Periodic trajectories are described and several new examples are presented. Topological properties of the elliptical billiards are analyzed and the results are formulated in the terms of the Fomenko graphs. [Projekat Ministarstva nauke Republike Srbije, br. 174020: Geometry and Topology of Manifolds and Integrable Dynamical Systems]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信