用多元线性回归估计丢失的输电线路电抗数据

A. Hettiarachchige-Don, V. Aravinthan
{"title":"用多元线性回归估计丢失的输电线路电抗数据","authors":"A. Hettiarachchige-Don, V. Aravinthan","doi":"10.1109/NAPS.2017.8107278","DOIUrl":null,"url":null,"abstract":"This paper explores the use of Multiple Linear Regression techniques in order to estimate sections of missing line reactance data sometimes found in the data received from synchrophasor measurement units. The high correlation between transmission line reactance and the system frequency is used to predict these estimates. Dynamic predictor coefficients are used to improve accuracy of the estimations and analysis is done to determine the most appropriate parameters to use in the regression model. All model building, analysis and testing is done using multiple sections of real PMU data.","PeriodicalId":296428,"journal":{"name":"2017 North American Power Symposium (NAPS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Estimation of missing transmission line reactance data using multiple linear regression\",\"authors\":\"A. Hettiarachchige-Don, V. Aravinthan\",\"doi\":\"10.1109/NAPS.2017.8107278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the use of Multiple Linear Regression techniques in order to estimate sections of missing line reactance data sometimes found in the data received from synchrophasor measurement units. The high correlation between transmission line reactance and the system frequency is used to predict these estimates. Dynamic predictor coefficients are used to improve accuracy of the estimations and analysis is done to determine the most appropriate parameters to use in the regression model. All model building, analysis and testing is done using multiple sections of real PMU data.\",\"PeriodicalId\":296428,\"journal\":{\"name\":\"2017 North American Power Symposium (NAPS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS.2017.8107278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2017.8107278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文探讨了使用多元线性回归技术来估计从同步相量测量单元接收的数据中有时发现的缺失线电抗数据的部分。传输线电抗与系统频率之间的高度相关性被用来预测这些估计。动态预测系数用于提高估计的准确性,并进行分析以确定回归模型中最合适的参数。所有的模型构建、分析和测试都是使用PMU真实数据的多个部分完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of missing transmission line reactance data using multiple linear regression
This paper explores the use of Multiple Linear Regression techniques in order to estimate sections of missing line reactance data sometimes found in the data received from synchrophasor measurement units. The high correlation between transmission line reactance and the system frequency is used to predict these estimates. Dynamic predictor coefficients are used to improve accuracy of the estimations and analysis is done to determine the most appropriate parameters to use in the regression model. All model building, analysis and testing is done using multiple sections of real PMU data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信