联合行动空间预测的场景锚网络

Faris Janjos, Maxim Dolgov, Muhamed Kuric, Yinzhe Shen, J. M. Zöllner
{"title":"联合行动空间预测的场景锚网络","authors":"Faris Janjos, Maxim Dolgov, Muhamed Kuric, Yinzhe Shen, J. M. Zöllner","doi":"10.1109/iv51971.2022.9827239","DOIUrl":null,"url":null,"abstract":"In this work, we present a novel multi-modal trajectory prediction architecture. We decompose the uncertainty of future trajectories along higher-level scene characteristics and lower-level motion characteristics, and model multi-modality along both dimensions separately. The scene uncertainty is captured in a joint manner, where diversity of scene modes is ensured by training multiple separate anchor networks which specialize to different scene realizations. At the same time, each network outputs multiple trajectories that cover smaller deviations given a scene mode, thus capturing motion modes. In addition, we train our architectures with an outlier-robust regression loss function, which offers a trade-off between the outlier-sensitive L2 and outlier-insensitive L1 losses. Our scene anchor model achieves improvements over the state of the art on the INTERACTION dataset, outperforming the StarNet architecture from our previous work.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"SAN: Scene Anchor Networks for Joint Action-Space Prediction\",\"authors\":\"Faris Janjos, Maxim Dolgov, Muhamed Kuric, Yinzhe Shen, J. M. Zöllner\",\"doi\":\"10.1109/iv51971.2022.9827239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a novel multi-modal trajectory prediction architecture. We decompose the uncertainty of future trajectories along higher-level scene characteristics and lower-level motion characteristics, and model multi-modality along both dimensions separately. The scene uncertainty is captured in a joint manner, where diversity of scene modes is ensured by training multiple separate anchor networks which specialize to different scene realizations. At the same time, each network outputs multiple trajectories that cover smaller deviations given a scene mode, thus capturing motion modes. In addition, we train our architectures with an outlier-robust regression loss function, which offers a trade-off between the outlier-sensitive L2 and outlier-insensitive L1 losses. Our scene anchor model achieves improvements over the state of the art on the INTERACTION dataset, outperforming the StarNet architecture from our previous work.\",\"PeriodicalId\":184622,\"journal\":{\"name\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iv51971.2022.9827239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在这项工作中,我们提出了一种新的多模态轨迹预测架构。我们沿着更高层次的场景特征和更低层次的运动特征分解未来轨迹的不确定性,并沿着这两个维度分别建模多模态。场景不确定性以联合方式捕获,其中通过训练多个独立的锚网络来确保场景模式的多样性,这些锚网络专门用于不同的场景实现。同时,每个网络输出多个轨迹,覆盖给定场景模式的较小偏差,从而捕获运动模式。此外,我们使用离群鲁棒回归损失函数训练我们的架构,该函数提供了离群敏感L2和离群不敏感L1损失之间的权衡。我们的场景锚模型在INTERACTION数据集上实现了对最新技术的改进,优于我们以前工作中的StarNet架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAN: Scene Anchor Networks for Joint Action-Space Prediction
In this work, we present a novel multi-modal trajectory prediction architecture. We decompose the uncertainty of future trajectories along higher-level scene characteristics and lower-level motion characteristics, and model multi-modality along both dimensions separately. The scene uncertainty is captured in a joint manner, where diversity of scene modes is ensured by training multiple separate anchor networks which specialize to different scene realizations. At the same time, each network outputs multiple trajectories that cover smaller deviations given a scene mode, thus capturing motion modes. In addition, we train our architectures with an outlier-robust regression loss function, which offers a trade-off between the outlier-sensitive L2 and outlier-insensitive L1 losses. Our scene anchor model achieves improvements over the state of the art on the INTERACTION dataset, outperforming the StarNet architecture from our previous work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信