基于特征提取的智能机器人命令词识别系统研究

Yi Zhang, Yanhua Li, Li Zeng, Q. Liu
{"title":"基于特征提取的智能机器人命令词识别系统研究","authors":"Yi Zhang, Yanhua Li, Li Zeng, Q. Liu","doi":"10.1109/CCPR.2009.5344015","DOIUrl":null,"url":null,"abstract":"According to the problem of the low recognition rate of speaker-independent recognition in intelligent robot, a kind of endpoint detection algorithm with double threshold is adopted and the speech endpoint can be detected accurately. The mixed parameter of Mel Frequency Cepstral Coefficients (MFCC) and fractal dimension is used as the feature parameter, and the intelligent robot command-word recognition system based on Hidden Markov Models (HMM) is realized. The recognition effect achieves above 85%. Then the performance of MFCC and the mixed parameter of MFCC and fractal dimension is contrasted and analyzed. The experiment result shows that the system recognition rate is improved by the algorithm of mixed parameter, and the system recognition performance is optimized.","PeriodicalId":354468,"journal":{"name":"2009 Chinese Conference on Pattern Recognition","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Intelligent Robot Command-Word Recognition System Based on Feature Extraction\",\"authors\":\"Yi Zhang, Yanhua Li, Li Zeng, Q. Liu\",\"doi\":\"10.1109/CCPR.2009.5344015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the problem of the low recognition rate of speaker-independent recognition in intelligent robot, a kind of endpoint detection algorithm with double threshold is adopted and the speech endpoint can be detected accurately. The mixed parameter of Mel Frequency Cepstral Coefficients (MFCC) and fractal dimension is used as the feature parameter, and the intelligent robot command-word recognition system based on Hidden Markov Models (HMM) is realized. The recognition effect achieves above 85%. Then the performance of MFCC and the mixed parameter of MFCC and fractal dimension is contrasted and analyzed. The experiment result shows that the system recognition rate is improved by the algorithm of mixed parameter, and the system recognition performance is optimized.\",\"PeriodicalId\":354468,\"journal\":{\"name\":\"2009 Chinese Conference on Pattern Recognition\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2009.5344015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2009.5344015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对智能机器人语音独立识别识别率低的问题,采用双阈值端点检测算法,能够准确检测语音端点。以Mel频率倒谱系数(MFCC)和分形维数的混合参数作为特征参数,实现了基于隐马尔可夫模型(HMM)的智能机器人命令字识别系统。识别效果达到85%以上。然后对MFCC的性能以及MFCC的混合参数与分形维数进行了对比分析。实验结果表明,混合参数算法提高了系统识别率,优化了系统的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Intelligent Robot Command-Word Recognition System Based on Feature Extraction
According to the problem of the low recognition rate of speaker-independent recognition in intelligent robot, a kind of endpoint detection algorithm with double threshold is adopted and the speech endpoint can be detected accurately. The mixed parameter of Mel Frequency Cepstral Coefficients (MFCC) and fractal dimension is used as the feature parameter, and the intelligent robot command-word recognition system based on Hidden Markov Models (HMM) is realized. The recognition effect achieves above 85%. Then the performance of MFCC and the mixed parameter of MFCC and fractal dimension is contrasted and analyzed. The experiment result shows that the system recognition rate is improved by the algorithm of mixed parameter, and the system recognition performance is optimized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信