连续视频流中的联合事件检测与描述

Huijuan Xu, Boyang Albert Li, Vasili Ramanishka, L. Sigal, Kate Saenko
{"title":"连续视频流中的联合事件检测与描述","authors":"Huijuan Xu, Boyang Albert Li, Vasili Ramanishka, L. Sigal, Kate Saenko","doi":"10.1109/WACV.2019.00048","DOIUrl":null,"url":null,"abstract":"Dense video captioning involves first localizing events in a video and then generating captions for the identified events. We present the Joint Event Detection and Description Network (JEDDi-Net) for solving this task in an end-to-end fashion, which encodes the input video stream with three-dimensional convolutional layers, proposes variable- length temporal events based on pooled features, and then uses a two-level hierarchical LSTM module with context modeling to transcribe the event proposals into captions. We show the effectiveness of our proposed JEDDi-Net on the large-scale ActivityNet Captions dataset.","PeriodicalId":254512,"journal":{"name":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Joint Event Detection and Description in Continuous Video Streams\",\"authors\":\"Huijuan Xu, Boyang Albert Li, Vasili Ramanishka, L. Sigal, Kate Saenko\",\"doi\":\"10.1109/WACV.2019.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dense video captioning involves first localizing events in a video and then generating captions for the identified events. We present the Joint Event Detection and Description Network (JEDDi-Net) for solving this task in an end-to-end fashion, which encodes the input video stream with three-dimensional convolutional layers, proposes variable- length temporal events based on pooled features, and then uses a two-level hierarchical LSTM module with context modeling to transcribe the event proposals into captions. We show the effectiveness of our proposed JEDDi-Net on the large-scale ActivityNet Captions dataset.\",\"PeriodicalId\":254512,\"journal\":{\"name\":\"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2019.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

密集视频字幕包括首先将视频中的事件本地化,然后为已识别的事件生成字幕。我们提出了联合事件检测和描述网络(JEDDi-Net)以端到端方式解决该任务,该网络使用三维卷积层对输入视频流进行编码,提出基于池化特征的变长时间事件,然后使用具有上下文建模的两级分层LSTM模块将事件建议转录成字幕。我们在大规模ActivityNet Captions数据集上展示了我们提出的JEDDi-Net的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Event Detection and Description in Continuous Video Streams
Dense video captioning involves first localizing events in a video and then generating captions for the identified events. We present the Joint Event Detection and Description Network (JEDDi-Net) for solving this task in an end-to-end fashion, which encodes the input video stream with three-dimensional convolutional layers, proposes variable- length temporal events based on pooled features, and then uses a two-level hierarchical LSTM module with context modeling to transcribe the event proposals into captions. We show the effectiveness of our proposed JEDDi-Net on the large-scale ActivityNet Captions dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信