使用多目标进化算法考虑可用性程度和雾景观利用率的新型雾计算服务部署策略

Maryam Eslami, Mehdi Sakhaei
{"title":"使用多目标进化算法考虑可用性程度和雾景观利用率的新型雾计算服务部署策略","authors":"Maryam Eslami, Mehdi Sakhaei","doi":"10.1109/IKT54664.2021.9685175","DOIUrl":null,"url":null,"abstract":"Fog computing is a promising paradigm for real-time and mission-critical Internet of Things (IoT) applications. Regarding the high distribution, heterogeneity, and limitation of fog resources, applications should be placed in a distributed manner to fully utilize these resources. In this paper, we propose a linear formulation for assuring the different availability require-ments of application services while maximizing the utilization of fog resources. We also compare three multiobjective evolutionary algorithms, namely MOPSO, NSGA-II, and MOEA/D for a trade-off between the mentioned optimization goals. The evaluation results in the iFogSim simulator demonstrate the efficiency of all three algorithms and a generally better behavior of MOPSO algorithm in terms of obtained objective values, application deadline satisfaction, and execution time.","PeriodicalId":274571,"journal":{"name":"2021 12th International Conference on Information and Knowledge Technology (IKT)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Service Deployment Policy in Fog Computing Considering The Degree of Availability and Fog Landscape Utilization Using Multiobjective Evolutionary Algorithms\",\"authors\":\"Maryam Eslami, Mehdi Sakhaei\",\"doi\":\"10.1109/IKT54664.2021.9685175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fog computing is a promising paradigm for real-time and mission-critical Internet of Things (IoT) applications. Regarding the high distribution, heterogeneity, and limitation of fog resources, applications should be placed in a distributed manner to fully utilize these resources. In this paper, we propose a linear formulation for assuring the different availability require-ments of application services while maximizing the utilization of fog resources. We also compare three multiobjective evolutionary algorithms, namely MOPSO, NSGA-II, and MOEA/D for a trade-off between the mentioned optimization goals. The evaluation results in the iFogSim simulator demonstrate the efficiency of all three algorithms and a generally better behavior of MOPSO algorithm in terms of obtained objective values, application deadline satisfaction, and execution time.\",\"PeriodicalId\":274571,\"journal\":{\"name\":\"2021 12th International Conference on Information and Knowledge Technology (IKT)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 12th International Conference on Information and Knowledge Technology (IKT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IKT54664.2021.9685175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT54664.2021.9685175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于实时和任务关键型物联网(IoT)应用而言,雾计算是一种大有可为的模式。鉴于雾资源的高度分布性、异构性和局限性,应用应该以分布式方式放置,以充分利用这些资源。在本文中,我们提出了一种线性表述方法,用于确保应用服务的不同可用性要求,同时最大限度地提高雾资源的利用率。我们还比较了三种多目标进化算法,即 MOPSO、NSGA-II 和 MOEA/D,以权衡上述优化目标。在 iFogSim 模拟器中的评估结果表明,这三种算法都很有效,而 MOPSO 算法在目标值、应用截止日期满足度和执行时间方面的表现普遍更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Service Deployment Policy in Fog Computing Considering The Degree of Availability and Fog Landscape Utilization Using Multiobjective Evolutionary Algorithms
Fog computing is a promising paradigm for real-time and mission-critical Internet of Things (IoT) applications. Regarding the high distribution, heterogeneity, and limitation of fog resources, applications should be placed in a distributed manner to fully utilize these resources. In this paper, we propose a linear formulation for assuring the different availability require-ments of application services while maximizing the utilization of fog resources. We also compare three multiobjective evolutionary algorithms, namely MOPSO, NSGA-II, and MOEA/D for a trade-off between the mentioned optimization goals. The evaluation results in the iFogSim simulator demonstrate the efficiency of all three algorithms and a generally better behavior of MOPSO algorithm in terms of obtained objective values, application deadline satisfaction, and execution time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信