{"title":"基于深度信念网络的人/车分类","authors":"Ning Sun, G. Han, K. Du, Jixin Liu, Xiaofei Li","doi":"10.1109/ICNC.2014.6975819","DOIUrl":null,"url":null,"abstract":"In this paper, we investigated the deep learning model for object classification. Robust classification networks were trained based on Deep Belief Networks (DBN) combined with several object representations included image pixel value, feature histogram by Histogram of Oriented Gradients (HOG) operator and eigen-features to distinguish four categories: pedestrian, biker, vehicle and others in the real scene. In addition, an image dataset called NUPTERC, in which the sample images collected from real surveillance video and Internet, was built to test the proposed methods. Experiments based on NUPTERC dataset demonstrated that the proposed deep learning architecture could achieve superior person vehicle classification performance under illumination changes, large pose variations and different resolution.","PeriodicalId":208779,"journal":{"name":"2014 10th International Conference on Natural Computation (ICNC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Person/vehicle classification based on deep belief networks\",\"authors\":\"Ning Sun, G. Han, K. Du, Jixin Liu, Xiaofei Li\",\"doi\":\"10.1109/ICNC.2014.6975819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigated the deep learning model for object classification. Robust classification networks were trained based on Deep Belief Networks (DBN) combined with several object representations included image pixel value, feature histogram by Histogram of Oriented Gradients (HOG) operator and eigen-features to distinguish four categories: pedestrian, biker, vehicle and others in the real scene. In addition, an image dataset called NUPTERC, in which the sample images collected from real surveillance video and Internet, was built to test the proposed methods. Experiments based on NUPTERC dataset demonstrated that the proposed deep learning architecture could achieve superior person vehicle classification performance under illumination changes, large pose variations and different resolution.\",\"PeriodicalId\":208779,\"journal\":{\"name\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2014.6975819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Natural Computation (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2014.6975819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Person/vehicle classification based on deep belief networks
In this paper, we investigated the deep learning model for object classification. Robust classification networks were trained based on Deep Belief Networks (DBN) combined with several object representations included image pixel value, feature histogram by Histogram of Oriented Gradients (HOG) operator and eigen-features to distinguish four categories: pedestrian, biker, vehicle and others in the real scene. In addition, an image dataset called NUPTERC, in which the sample images collected from real surveillance video and Internet, was built to test the proposed methods. Experiments based on NUPTERC dataset demonstrated that the proposed deep learning architecture could achieve superior person vehicle classification performance under illumination changes, large pose variations and different resolution.