Hitchin自对偶方程的高解

Lynn Heller, Sebastian Heller
{"title":"Hitchin自对偶方程的高解","authors":"Lynn Heller, Sebastian Heller","doi":"10.1093/INTEGR/XYAA006","DOIUrl":null,"url":null,"abstract":"Solutions of Hitchin’s self-duality equations correspond to special real sections of the Deligne–Hitchin moduli space—twistor lines. A question posed by Simpson in 1997 asks whether all real sections give rise to global solutions of the self-duality equations. An affirmative answer would in principle allow for complex analytic procedures to obtain all solutions of the self-duality equations. The purpose of this article is to construct counter examples given by certain (branched) Willmore surfaces in three-space (with monodromy) via the generalized Whitham flow. Though these sections do not give rise to global solutions of the self-duality equations on the whole Riemann surface M, they induce solutions on an open and dense subset of it. This suggest a connection between Willmore surfaces, i.e., rank 4 harmonic maps theory, with the rank 2 self-duality theory.","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Higher solutions of Hitchin’s self-duality equations\",\"authors\":\"Lynn Heller, Sebastian Heller\",\"doi\":\"10.1093/INTEGR/XYAA006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solutions of Hitchin’s self-duality equations correspond to special real sections of the Deligne–Hitchin moduli space—twistor lines. A question posed by Simpson in 1997 asks whether all real sections give rise to global solutions of the self-duality equations. An affirmative answer would in principle allow for complex analytic procedures to obtain all solutions of the self-duality equations. The purpose of this article is to construct counter examples given by certain (branched) Willmore surfaces in three-space (with monodromy) via the generalized Whitham flow. Though these sections do not give rise to global solutions of the self-duality equations on the whole Riemann surface M, they induce solutions on an open and dense subset of it. This suggest a connection between Willmore surfaces, i.e., rank 4 harmonic maps theory, with the rank 2 self-duality theory.\",\"PeriodicalId\":242196,\"journal\":{\"name\":\"Journal of Integrable Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/INTEGR/XYAA006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/INTEGR/XYAA006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

Hitchin自对偶方程的解对应于delign - Hitchin模空间扭曲线的特殊实段。Simpson在1997年提出的一个问题是,是否所有实部分都会产生自对偶方程的全局解。一个肯定的答案原则上将允许复杂的分析程序获得自对偶方程的所有解。本文的目的是通过广义Whitham流构造三维(单)空间中某些(分支)Willmore曲面给出的反例。虽然这些部分不能得到整个黎曼曲面M上自对偶方程的全局解,但它们可以推导出黎曼曲面M的一个开密子集上的解。这表明Willmore曲面(即4阶调和映射理论)与2阶自对偶理论之间存在联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher solutions of Hitchin’s self-duality equations
Solutions of Hitchin’s self-duality equations correspond to special real sections of the Deligne–Hitchin moduli space—twistor lines. A question posed by Simpson in 1997 asks whether all real sections give rise to global solutions of the self-duality equations. An affirmative answer would in principle allow for complex analytic procedures to obtain all solutions of the self-duality equations. The purpose of this article is to construct counter examples given by certain (branched) Willmore surfaces in three-space (with monodromy) via the generalized Whitham flow. Though these sections do not give rise to global solutions of the self-duality equations on the whole Riemann surface M, they induce solutions on an open and dense subset of it. This suggest a connection between Willmore surfaces, i.e., rank 4 harmonic maps theory, with the rank 2 self-duality theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信