一种使用朴素贝叶斯分类器检测假新闻的多项技术

Ashwini S. Yerlekar, N. Mungale, Sampada S. Wazalwar
{"title":"一种使用朴素贝叶斯分类器检测假新闻的多项技术","authors":"Ashwini S. Yerlekar, N. Mungale, Sampada S. Wazalwar","doi":"10.1109/iccica52458.2021.9697244","DOIUrl":null,"url":null,"abstract":"Faux news and hoaxes are there for the reason that before the advent of the internet. The broadly common definition of internet fake news is: \"fictitious articles intentionally fancied to lie to readers\". Social media and information stores submit fake information to increase the target market or as part of battle. This exposition analyses the prevalence of pretend news in light-weight of the advances in verbal exchange created capacity by the emergence of social networking web sites. We tend to apply device mastering techniques to classify the datasets. The Fake news detection may be utilized by users to sight a piece of writing containing fake and dishonorable info. This paper indicates an easy technique for faux news detection using naive Bayes classifier. We have a tendency to use honest and punctiliously decided on alternatives of the name and publish to appropriately determine fake posts. On the test set, we achieved a type accuracy of 80% approximately, which is a decent result given the version's relative simplicity.","PeriodicalId":327193,"journal":{"name":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A multinomial technique for detecting fake news using the Naive Bayes Classifier\",\"authors\":\"Ashwini S. Yerlekar, N. Mungale, Sampada S. Wazalwar\",\"doi\":\"10.1109/iccica52458.2021.9697244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Faux news and hoaxes are there for the reason that before the advent of the internet. The broadly common definition of internet fake news is: \\\"fictitious articles intentionally fancied to lie to readers\\\". Social media and information stores submit fake information to increase the target market or as part of battle. This exposition analyses the prevalence of pretend news in light-weight of the advances in verbal exchange created capacity by the emergence of social networking web sites. We tend to apply device mastering techniques to classify the datasets. The Fake news detection may be utilized by users to sight a piece of writing containing fake and dishonorable info. This paper indicates an easy technique for faux news detection using naive Bayes classifier. We have a tendency to use honest and punctiliously decided on alternatives of the name and publish to appropriately determine fake posts. On the test set, we achieved a type accuracy of 80% approximately, which is a decent result given the version's relative simplicity.\",\"PeriodicalId\":327193,\"journal\":{\"name\":\"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccica52458.2021.9697244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccica52458.2021.9697244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

假新闻和骗局存在的原因是在互联网出现之前。互联网假新闻的普遍定义是:“故意虚构的文章,向读者撒谎”。社交媒体和信息店提交虚假信息以增加目标市场或作为战斗的一部分。本文分析了社交网站的出现所带来的语言交流能力的进步所带来的虚假新闻的流行。我们倾向于应用设备掌握技术对数据集进行分类。假新闻检测可以被用户用来查看一篇含有虚假和不光彩信息的文章。本文提出了一种简单的利用朴素贝叶斯分类器进行假新闻检测的方法。我们倾向于使用诚实和谨慎地决定的替代名称和发布来适当地确定虚假帖子。在测试集上,我们实现了大约80%的类型准确率,考虑到该版本的相对简单性,这是一个不错的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multinomial technique for detecting fake news using the Naive Bayes Classifier
Faux news and hoaxes are there for the reason that before the advent of the internet. The broadly common definition of internet fake news is: "fictitious articles intentionally fancied to lie to readers". Social media and information stores submit fake information to increase the target market or as part of battle. This exposition analyses the prevalence of pretend news in light-weight of the advances in verbal exchange created capacity by the emergence of social networking web sites. We tend to apply device mastering techniques to classify the datasets. The Fake news detection may be utilized by users to sight a piece of writing containing fake and dishonorable info. This paper indicates an easy technique for faux news detection using naive Bayes classifier. We have a tendency to use honest and punctiliously decided on alternatives of the name and publish to appropriately determine fake posts. On the test set, we achieved a type accuracy of 80% approximately, which is a decent result given the version's relative simplicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信