加强维度集成的严格性:超越实例匹配

D. Riazati, J. Thom, Xiuzhen Zhang
{"title":"加强维度集成的严格性:超越实例匹配","authors":"D. Riazati, J. Thom, Xiuzhen Zhang","doi":"10.1145/2064676.2064679","DOIUrl":null,"url":null,"abstract":"Maintaining strictness in dimensions is important in integration of data warehouses. A dimension that satisfies all of its roll-up constraints is said to be strict, a property that is required for correct aggregation. Existing work on instance matching does not address the problem of enforcing the strictness of roll-up constraints. In this paper, we use a graph matching-based approach to dimension instance matching and propose an algorithm that enforces strictness and reduces false positives. Making use of similarity flooding, the graph matching algorithm can be greedy in identifying matching members, we propose heuristics to further reduce false positive matches and reduce false strictness. Experiments on real-world data demonstrates the effectiveness of our proposed approach.","PeriodicalId":335396,"journal":{"name":"International Workshop on Data Warehousing and OLAP","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Enforcing strictness in integration of dimensions: beyond instance matching\",\"authors\":\"D. Riazati, J. Thom, Xiuzhen Zhang\",\"doi\":\"10.1145/2064676.2064679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maintaining strictness in dimensions is important in integration of data warehouses. A dimension that satisfies all of its roll-up constraints is said to be strict, a property that is required for correct aggregation. Existing work on instance matching does not address the problem of enforcing the strictness of roll-up constraints. In this paper, we use a graph matching-based approach to dimension instance matching and propose an algorithm that enforces strictness and reduces false positives. Making use of similarity flooding, the graph matching algorithm can be greedy in identifying matching members, we propose heuristics to further reduce false positive matches and reduce false strictness. Experiments on real-world data demonstrates the effectiveness of our proposed approach.\",\"PeriodicalId\":335396,\"journal\":{\"name\":\"International Workshop on Data Warehousing and OLAP\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Data Warehousing and OLAP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2064676.2064679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Warehousing and OLAP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2064676.2064679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在数据仓库的集成中,保持维度上的严格性非常重要。满足其所有上卷约束的维度称为严格维度,这是正确聚合所必需的属性。现有的实例匹配工作没有解决强制执行上卷约束的严格性的问题。在本文中,我们使用一种基于图匹配的方法来进行维度实例匹配,并提出了一种增强严格性和减少误报的算法。利用相似度泛洪,图匹配算法可以贪婪地识别匹配成员,我们提出了启发式算法来进一步减少误报匹配和降低假严格性。在实际数据上的实验证明了我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enforcing strictness in integration of dimensions: beyond instance matching
Maintaining strictness in dimensions is important in integration of data warehouses. A dimension that satisfies all of its roll-up constraints is said to be strict, a property that is required for correct aggregation. Existing work on instance matching does not address the problem of enforcing the strictness of roll-up constraints. In this paper, we use a graph matching-based approach to dimension instance matching and propose an algorithm that enforces strictness and reduces false positives. Making use of similarity flooding, the graph matching algorithm can be greedy in identifying matching members, we propose heuristics to further reduce false positive matches and reduce false strictness. Experiments on real-world data demonstrates the effectiveness of our proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信