无人机视频准确覆盖汇总

Chung-Ching Lin, Sharath Pankanti, John R. Smith
{"title":"无人机视频准确覆盖汇总","authors":"Chung-Ching Lin, Sharath Pankanti, John R. Smith","doi":"10.1109/AIPR.2014.7041923","DOIUrl":null,"url":null,"abstract":"A predominant fraction of UAV videos are never watched or analyzed and there is growing interest in having a summary view of the UAV videos for obtaining a better overall perspective of the visual content. Real time summarization of the UAV video events is also important from tactical perspective. Our research focuses on developing resilient algorithms for summarizing videos that can be efficiently processed either onboard or offline. Our previous work [2] on the video summarization has focused on the event summarization. More recently, we have investigated the challenges in providing the coverage summarization of the video content from UAV videos. Different from the traditional coverage summarization taking SfM approach (e.g., [7]) on SIFT-based [14] feature points, there are several additional challenges including jitter, low resolution, contrast, lack of salient features in UAV videos. We propose a novel correspondence algorithm that exploits the 3D context that can potentially alleviate the correspondence ambiguity. Our results on VIRAT dataset shows that our algorithm can find many correct correspondences in low resolution imagery while avoiding many false positives from the traditional algorithms.","PeriodicalId":210982,"journal":{"name":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Accurate coverage summarization of UAV videos\",\"authors\":\"Chung-Ching Lin, Sharath Pankanti, John R. Smith\",\"doi\":\"10.1109/AIPR.2014.7041923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A predominant fraction of UAV videos are never watched or analyzed and there is growing interest in having a summary view of the UAV videos for obtaining a better overall perspective of the visual content. Real time summarization of the UAV video events is also important from tactical perspective. Our research focuses on developing resilient algorithms for summarizing videos that can be efficiently processed either onboard or offline. Our previous work [2] on the video summarization has focused on the event summarization. More recently, we have investigated the challenges in providing the coverage summarization of the video content from UAV videos. Different from the traditional coverage summarization taking SfM approach (e.g., [7]) on SIFT-based [14] feature points, there are several additional challenges including jitter, low resolution, contrast, lack of salient features in UAV videos. We propose a novel correspondence algorithm that exploits the 3D context that can potentially alleviate the correspondence ambiguity. Our results on VIRAT dataset shows that our algorithm can find many correct correspondences in low resolution imagery while avoiding many false positives from the traditional algorithms.\",\"PeriodicalId\":210982,\"journal\":{\"name\":\"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2014.7041923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2014.7041923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

UAV视频的主要部分从未被观看或分析,并且对UAV视频的摘要视图越来越感兴趣,以便获得更好的视觉内容的整体视角。从战术角度看,无人机视频事件的实时总结也很重要。我们的研究重点是开发弹性算法,用于总结可以在船上或离线有效处理的视频。我们之前关于视频摘要的工作[2]主要集中在事件摘要上。最近,我们研究了在提供无人机视频内容的覆盖摘要方面的挑战。与基于sift[14]特征点的采用SfM方法的传统覆盖摘要(例如[7])不同,无人机视频还存在抖动、低分辨率、对比度、缺乏显著特征等挑战。我们提出了一种新的对应算法,利用三维上下文可以潜在地减轻对应模糊。在VIRAT数据集上的结果表明,该算法可以在低分辨率图像中找到许多正确的对应,同时避免了传统算法的许多误报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate coverage summarization of UAV videos
A predominant fraction of UAV videos are never watched or analyzed and there is growing interest in having a summary view of the UAV videos for obtaining a better overall perspective of the visual content. Real time summarization of the UAV video events is also important from tactical perspective. Our research focuses on developing resilient algorithms for summarizing videos that can be efficiently processed either onboard or offline. Our previous work [2] on the video summarization has focused on the event summarization. More recently, we have investigated the challenges in providing the coverage summarization of the video content from UAV videos. Different from the traditional coverage summarization taking SfM approach (e.g., [7]) on SIFT-based [14] feature points, there are several additional challenges including jitter, low resolution, contrast, lack of salient features in UAV videos. We propose a novel correspondence algorithm that exploits the 3D context that can potentially alleviate the correspondence ambiguity. Our results on VIRAT dataset shows that our algorithm can find many correct correspondences in low resolution imagery while avoiding many false positives from the traditional algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信