D. Cui, C. Xue, Chao Liu, Liping Wei, Yonghua Wang, Jun Liu
{"title":"基于绝缘体上硅的新型谐振器系统的诱导透明性","authors":"D. Cui, C. Xue, Chao Liu, Liping Wei, Yonghua Wang, Jun Liu","doi":"10.1109/NEMS.2013.6559798","DOIUrl":null,"url":null,"abstract":"In the paper, Coupled-resonator-induced-transparency (CRIT) phenomenon in a novel integrated on-chip optical resonator system is experimentally demonstrated. The system is composed of a four-ring resonator with 20 μm diameter on silicon, whose spectrum has a narrow transparency peak with low group velocity. The CRIT effect is observed in the optical coupled-resonator due to the classical destructive interference. This system can be used to study the slow and fast light experiments because of its simplicity and flexibility. In this work, a CRIT resonance with a quality factor of 7.2×104 is demonstrated with the same cavity size and the power coupling of the system is 60%, which agree well with the theoretical analysis. The through and drop transmission spectra of the resonator are coincided well with each other.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Induced-transparency in silicon-on-insulator based novel resonator systems\",\"authors\":\"D. Cui, C. Xue, Chao Liu, Liping Wei, Yonghua Wang, Jun Liu\",\"doi\":\"10.1109/NEMS.2013.6559798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, Coupled-resonator-induced-transparency (CRIT) phenomenon in a novel integrated on-chip optical resonator system is experimentally demonstrated. The system is composed of a four-ring resonator with 20 μm diameter on silicon, whose spectrum has a narrow transparency peak with low group velocity. The CRIT effect is observed in the optical coupled-resonator due to the classical destructive interference. This system can be used to study the slow and fast light experiments because of its simplicity and flexibility. In this work, a CRIT resonance with a quality factor of 7.2×104 is demonstrated with the same cavity size and the power coupling of the system is 60%, which agree well with the theoretical analysis. The through and drop transmission spectra of the resonator are coincided well with each other.\",\"PeriodicalId\":308928,\"journal\":{\"name\":\"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2013.6559798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2013.6559798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Induced-transparency in silicon-on-insulator based novel resonator systems
In the paper, Coupled-resonator-induced-transparency (CRIT) phenomenon in a novel integrated on-chip optical resonator system is experimentally demonstrated. The system is composed of a four-ring resonator with 20 μm diameter on silicon, whose spectrum has a narrow transparency peak with low group velocity. The CRIT effect is observed in the optical coupled-resonator due to the classical destructive interference. This system can be used to study the slow and fast light experiments because of its simplicity and flexibility. In this work, a CRIT resonance with a quality factor of 7.2×104 is demonstrated with the same cavity size and the power coupling of the system is 60%, which agree well with the theoretical analysis. The through and drop transmission spectra of the resonator are coincided well with each other.