{"title":"基于自适应遗传算法的竞价策略演化","authors":"G. K. Soon, P. Anthony, J. Teo, C. K. On","doi":"10.1109/IUCE.2009.108","DOIUrl":null,"url":null,"abstract":"This paper investigates the application of self-adaptation genetic algorithm on a flexible and configurable heuristic decision making framework that can tackle the problem of bidding across multiple auctions that apply different protocols (English, Vickrey and Dutch) by using an autonomous agent to search for the most effective strategies (offline). Our study shows that self-adaptation genetic algorithm performance is much better than conventional genetic algorithm. An empirical evaluation on the effectiveness of genetic algorithm and self-adaptation genetic algorithm for searching the most effective strategies in the heuristic decision making framework are discussed in this paper.","PeriodicalId":153560,"journal":{"name":"2009 International Symposium on Intelligent Ubiquitous Computing and Education","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evolving Bidding Strategies Using Self-Adaptation Genetic Algorithm\",\"authors\":\"G. K. Soon, P. Anthony, J. Teo, C. K. On\",\"doi\":\"10.1109/IUCE.2009.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the application of self-adaptation genetic algorithm on a flexible and configurable heuristic decision making framework that can tackle the problem of bidding across multiple auctions that apply different protocols (English, Vickrey and Dutch) by using an autonomous agent to search for the most effective strategies (offline). Our study shows that self-adaptation genetic algorithm performance is much better than conventional genetic algorithm. An empirical evaluation on the effectiveness of genetic algorithm and self-adaptation genetic algorithm for searching the most effective strategies in the heuristic decision making framework are discussed in this paper.\",\"PeriodicalId\":153560,\"journal\":{\"name\":\"2009 International Symposium on Intelligent Ubiquitous Computing and Education\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Symposium on Intelligent Ubiquitous Computing and Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IUCE.2009.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on Intelligent Ubiquitous Computing and Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IUCE.2009.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolving Bidding Strategies Using Self-Adaptation Genetic Algorithm
This paper investigates the application of self-adaptation genetic algorithm on a flexible and configurable heuristic decision making framework that can tackle the problem of bidding across multiple auctions that apply different protocols (English, Vickrey and Dutch) by using an autonomous agent to search for the most effective strategies (offline). Our study shows that self-adaptation genetic algorithm performance is much better than conventional genetic algorithm. An empirical evaluation on the effectiveness of genetic algorithm and self-adaptation genetic algorithm for searching the most effective strategies in the heuristic decision making framework are discussed in this paper.