WSkS的反前置:一点点就能走很远

Vojtěch Havlena, L. Holík, Ondřej Lengál, Ondrej Vales, Tomáš Vojnar
{"title":"WSkS的反前置:一点点就能走很远","authors":"Vojtěch Havlena, L. Holík, Ondřej Lengál, Ondrej Vales, Tomáš Vojnar","doi":"10.29007/6bfc","DOIUrl":null,"url":null,"abstract":"We study light-weight techniques for preprocessing of WSkS formulae in an automatabased decision procedure as implemented, e.g., in Mona. The techniques we use are based on antiprenexing, i.e., pushing quantifiers deeper into a formula. Intuitively, this tries to alleviate the explosion in the size of the constructed automata by making it happen sooner on smaller automata (and have the automata minimization reduce the output). The formula transformations that we use to implement antiprenexing may, however, be applied in different ways and extent and, if used in an unsuitable way, may also cause an explosion in the size of the formula and the automata built while deciding it. Therefore, our approach uses informed rules that use an estimation of the cost of constructing automata for WSkS formulae. The estimation is based on a model learnt from runs of the decision algorithm on various formulae. An experimental evaluation of our technique shows that antiprenexing can significantly boost the performance of the base WSkS decision procedure, sometimes allowing one to decide formulae that could not be decided before.","PeriodicalId":207621,"journal":{"name":"Logic Programming and Automated Reasoning","volume":"610 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Antiprenexing for WSkS: A Little Goes a Long Way\",\"authors\":\"Vojtěch Havlena, L. Holík, Ondřej Lengál, Ondrej Vales, Tomáš Vojnar\",\"doi\":\"10.29007/6bfc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study light-weight techniques for preprocessing of WSkS formulae in an automatabased decision procedure as implemented, e.g., in Mona. The techniques we use are based on antiprenexing, i.e., pushing quantifiers deeper into a formula. Intuitively, this tries to alleviate the explosion in the size of the constructed automata by making it happen sooner on smaller automata (and have the automata minimization reduce the output). The formula transformations that we use to implement antiprenexing may, however, be applied in different ways and extent and, if used in an unsuitable way, may also cause an explosion in the size of the formula and the automata built while deciding it. Therefore, our approach uses informed rules that use an estimation of the cost of constructing automata for WSkS formulae. The estimation is based on a model learnt from runs of the decision algorithm on various formulae. An experimental evaluation of our technique shows that antiprenexing can significantly boost the performance of the base WSkS decision procedure, sometimes allowing one to decide formulae that could not be decided before.\",\"PeriodicalId\":207621,\"journal\":{\"name\":\"Logic Programming and Automated Reasoning\",\"volume\":\"610 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic Programming and Automated Reasoning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/6bfc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Programming and Automated Reasoning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/6bfc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了在自动决策过程中预处理wsk公式的轻量级技术,如在Mona中实现的。我们使用的技术基于反前置,即将量词推入公式的更深处。直观地说,这试图通过使自动机在较小的自动机上更快地发生(并使自动机最小化减少输出)来减轻构造自动机大小的爆炸。然而,我们用来实现反前置的公式转换可以以不同的方式和程度应用,如果使用不当,也可能导致公式的大小和在决定它时构建的自动机的爆炸。因此,我们的方法使用了知情规则,这些规则使用了为wwsk公式构建自动机的成本估计。该估计是基于从决策算法对各种公式的运行中学习到的模型。对我们的技术的实验评估表明,反前置可以显著提高基本WSkS决策过程的性能,有时允许人们决定以前无法决定的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antiprenexing for WSkS: A Little Goes a Long Way
We study light-weight techniques for preprocessing of WSkS formulae in an automatabased decision procedure as implemented, e.g., in Mona. The techniques we use are based on antiprenexing, i.e., pushing quantifiers deeper into a formula. Intuitively, this tries to alleviate the explosion in the size of the constructed automata by making it happen sooner on smaller automata (and have the automata minimization reduce the output). The formula transformations that we use to implement antiprenexing may, however, be applied in different ways and extent and, if used in an unsuitable way, may also cause an explosion in the size of the formula and the automata built while deciding it. Therefore, our approach uses informed rules that use an estimation of the cost of constructing automata for WSkS formulae. The estimation is based on a model learnt from runs of the decision algorithm on various formulae. An experimental evaluation of our technique shows that antiprenexing can significantly boost the performance of the base WSkS decision procedure, sometimes allowing one to decide formulae that could not be decided before.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信