基于语言单位加权和概率耦合器的支持向量机语音文档分类

U. Iurgel, G. Rigoll
{"title":"基于语言单位加权和概率耦合器的支持向量机语音文档分类","authors":"U. Iurgel, G. Rigoll","doi":"10.1109/ICPR.2004.1334347","DOIUrl":null,"url":null,"abstract":"The task addressed by this paper is spoken document classification (SDC) of German TV news with support vector machines (SVMs). It shows the benefits of weighting different linguistic units when combined into one feature vector. Further experiments show that probabilistic SVMs (pSVMs) with couplers perform well on a SDC task. New couplers for multi-category classification, both for pSVMs and non-pSVMs, are discussed. They are easy to implement and show good and promising results. It turns out that using the distance instead of the decision value can be favorable. Theoretical justification is given for our approaches, and some results are explained theoretically.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spoken document classification with SVMs using linguistic unit weighting and probabilistic couplers\",\"authors\":\"U. Iurgel, G. Rigoll\",\"doi\":\"10.1109/ICPR.2004.1334347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task addressed by this paper is spoken document classification (SDC) of German TV news with support vector machines (SVMs). It shows the benefits of weighting different linguistic units when combined into one feature vector. Further experiments show that probabilistic SVMs (pSVMs) with couplers perform well on a SDC task. New couplers for multi-category classification, both for pSVMs and non-pSVMs, are discussed. They are easy to implement and show good and promising results. It turns out that using the distance instead of the decision value can be favorable. Theoretical justification is given for our approaches, and some results are explained theoretically.\",\"PeriodicalId\":335842,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2004.1334347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1334347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了基于支持向量机(svm)的德国电视新闻语音文档分类。它显示了加权不同的语言单位时,组合成一个特征向量的好处。进一步的实验表明,带耦合器的概率支持向量机(psvm)在SDC任务上表现良好。讨论了适用于psvm和非psvm多类别分类的新型耦合器。它们易于实施,并显示出良好和有希望的结果。结果表明,使用距离代替决策值是有利的。对我们的方法进行了理论论证,并对一些结果进行了理论解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spoken document classification with SVMs using linguistic unit weighting and probabilistic couplers
The task addressed by this paper is spoken document classification (SDC) of German TV news with support vector machines (SVMs). It shows the benefits of weighting different linguistic units when combined into one feature vector. Further experiments show that probabilistic SVMs (pSVMs) with couplers perform well on a SDC task. New couplers for multi-category classification, both for pSVMs and non-pSVMs, are discussed. They are easy to implement and show good and promising results. It turns out that using the distance instead of the decision value can be favorable. Theoretical justification is given for our approaches, and some results are explained theoretically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信