{"title":"改进了短交换排序的上界","authors":"Xuerong Feng, Z. Meng, I. H. Sudborough","doi":"10.1109/ISPAN.2004.1300465","DOIUrl":null,"url":null,"abstract":"We consider the problem of sorting an arbitrary permutation of length n using substring reversals of length 2 or 3. This has been called \"short swaps \". We give an upper bound of (5/24) n/sup 2/ + O(nlogn), improving the previous ( 1/4 ) n/sup 2/ upper bound. We also show that there is a short swap sorting network with ( 1/4 ) n/sup 2/ +O(nlogn) comparators and depth n.","PeriodicalId":198404,"journal":{"name":"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Improved upper bound for sorting by short swaps\",\"authors\":\"Xuerong Feng, Z. Meng, I. H. Sudborough\",\"doi\":\"10.1109/ISPAN.2004.1300465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of sorting an arbitrary permutation of length n using substring reversals of length 2 or 3. This has been called \\\"short swaps \\\". We give an upper bound of (5/24) n/sup 2/ + O(nlogn), improving the previous ( 1/4 ) n/sup 2/ upper bound. We also show that there is a short swap sorting network with ( 1/4 ) n/sup 2/ +O(nlogn) comparators and depth n.\",\"PeriodicalId\":198404,\"journal\":{\"name\":\"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPAN.2004.1300465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPAN.2004.1300465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider the problem of sorting an arbitrary permutation of length n using substring reversals of length 2 or 3. This has been called "short swaps ". We give an upper bound of (5/24) n/sup 2/ + O(nlogn), improving the previous ( 1/4 ) n/sup 2/ upper bound. We also show that there is a short swap sorting network with ( 1/4 ) n/sup 2/ +O(nlogn) comparators and depth n.