{"title":"分析GPU架构中内存引用的局部性","authors":"Saurabh Gupta, Ping Xiang, Huiyang Zhou","doi":"10.1145/2492408.2492423","DOIUrl":null,"url":null,"abstract":"In this paper we advocate formal locality analysis on memory references of GPGPU kernels. We investigate the locality of reference at different cache levels in the memory hierarchy. At the L1 cache level, we look into the locality behavior at the warp-, the thread block- and the streaming multiprocessor-level. Using matrix multiplication as a case study, we show that our locality analysis accurately captures some interesting and counter-intuitive behavior of the memory accesses. We believe that such analysis will provide very useful insights in understanding the memory accessing behavior and optimizing the memory hierarchy in GPU architectures.","PeriodicalId":130040,"journal":{"name":"Workshop on Memory System Performance and Correctness","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Analyzing locality of memory references in GPU architectures\",\"authors\":\"Saurabh Gupta, Ping Xiang, Huiyang Zhou\",\"doi\":\"10.1145/2492408.2492423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we advocate formal locality analysis on memory references of GPGPU kernels. We investigate the locality of reference at different cache levels in the memory hierarchy. At the L1 cache level, we look into the locality behavior at the warp-, the thread block- and the streaming multiprocessor-level. Using matrix multiplication as a case study, we show that our locality analysis accurately captures some interesting and counter-intuitive behavior of the memory accesses. We believe that such analysis will provide very useful insights in understanding the memory accessing behavior and optimizing the memory hierarchy in GPU architectures.\",\"PeriodicalId\":130040,\"journal\":{\"name\":\"Workshop on Memory System Performance and Correctness\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Memory System Performance and Correctness\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2492408.2492423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Memory System Performance and Correctness","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492408.2492423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analyzing locality of memory references in GPU architectures
In this paper we advocate formal locality analysis on memory references of GPGPU kernels. We investigate the locality of reference at different cache levels in the memory hierarchy. At the L1 cache level, we look into the locality behavior at the warp-, the thread block- and the streaming multiprocessor-level. Using matrix multiplication as a case study, we show that our locality analysis accurately captures some interesting and counter-intuitive behavior of the memory accesses. We believe that such analysis will provide very useful insights in understanding the memory accessing behavior and optimizing the memory hierarchy in GPU architectures.