{"title":"基于强化学习的LTE-WiFi公平共存联合信道/子帧选择方案","authors":"Yuki Kishimoto, Xiaoyan Wang, M. Umehira","doi":"10.1109/MSN50589.2020.00067","DOIUrl":null,"url":null,"abstract":"In recent years, to cope with the rapid growth in mobile data traffic, increasing the capacity of cellular networks is receiving much attention. To this end, offloading the current LTE-advance or the future 5G system’s data traffic from licensed spectrum to unlicensed spectrum that used by WiFi system has been proposed. In the current LTE-WiFi coexistence standard, a Listen-Before-Talk (LBT) approach is adopted to make the LTE system senses the medium before a transmission. However, the channel selection and subframe adjustment issues are still open to realize fair coexistence between co-located LTE and WiFi networks. In this paper, we propose a reinforcement learning based joint channel/subframe selection scheme for fair LTE-WiFi coexistence. The proposed approach is distributedly implemented at LTE Access Points (APs) with zero knowledge of the WiFi systems. Extensive simulations have been performed, and the results verified that the proposed approach can achieve better fairness and packet loss rate compared with baseline schemes.","PeriodicalId":447605,"journal":{"name":"2020 16th International Conference on Mobility, Sensing and Networking (MSN)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reinforcement Learning based Joint Channel/Subframe Selection Scheme for Fair LTE-WiFi Coexistence\",\"authors\":\"Yuki Kishimoto, Xiaoyan Wang, M. Umehira\",\"doi\":\"10.1109/MSN50589.2020.00067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, to cope with the rapid growth in mobile data traffic, increasing the capacity of cellular networks is receiving much attention. To this end, offloading the current LTE-advance or the future 5G system’s data traffic from licensed spectrum to unlicensed spectrum that used by WiFi system has been proposed. In the current LTE-WiFi coexistence standard, a Listen-Before-Talk (LBT) approach is adopted to make the LTE system senses the medium before a transmission. However, the channel selection and subframe adjustment issues are still open to realize fair coexistence between co-located LTE and WiFi networks. In this paper, we propose a reinforcement learning based joint channel/subframe selection scheme for fair LTE-WiFi coexistence. The proposed approach is distributedly implemented at LTE Access Points (APs) with zero knowledge of the WiFi systems. Extensive simulations have been performed, and the results verified that the proposed approach can achieve better fairness and packet loss rate compared with baseline schemes.\",\"PeriodicalId\":447605,\"journal\":{\"name\":\"2020 16th International Conference on Mobility, Sensing and Networking (MSN)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 16th International Conference on Mobility, Sensing and Networking (MSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSN50589.2020.00067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 16th International Conference on Mobility, Sensing and Networking (MSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSN50589.2020.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reinforcement Learning based Joint Channel/Subframe Selection Scheme for Fair LTE-WiFi Coexistence
In recent years, to cope with the rapid growth in mobile data traffic, increasing the capacity of cellular networks is receiving much attention. To this end, offloading the current LTE-advance or the future 5G system’s data traffic from licensed spectrum to unlicensed spectrum that used by WiFi system has been proposed. In the current LTE-WiFi coexistence standard, a Listen-Before-Talk (LBT) approach is adopted to make the LTE system senses the medium before a transmission. However, the channel selection and subframe adjustment issues are still open to realize fair coexistence between co-located LTE and WiFi networks. In this paper, we propose a reinforcement learning based joint channel/subframe selection scheme for fair LTE-WiFi coexistence. The proposed approach is distributedly implemented at LTE Access Points (APs) with zero knowledge of the WiFi systems. Extensive simulations have been performed, and the results verified that the proposed approach can achieve better fairness and packet loss rate compared with baseline schemes.