封装有机薄膜晶体管有源层

C. Pannemann, T. Diekmann, U. Hilleringmann, U. Schurmann, M. Scharnberg, V. Zaporojtchenko, R. Adelung, F. Faupel
{"title":"封装有机薄膜晶体管有源层","authors":"C. Pannemann, T. Diekmann, U. Hilleringmann, U. Schurmann, M. Scharnberg, V. Zaporojtchenko, R. Adelung, F. Faupel","doi":"10.1109/POLYTR.2005.1596488","DOIUrl":null,"url":null,"abstract":"Organic thin-film transistors (OTFTs) with W = 1000 μm and L = 1 μm were produced with a high batch reproducibility of the on-current of -63.3 μA +/- 17 μA (-40 VDS, - 40VGS) and the threshold voltage of 1.3 V +/- 1.44V. Unprotected organic devices suffer from degradation due to water damp and oxygen incorporation. To validate the function of an OTFT capsulation, interdigital transistor structures (W = 46.8cm, L = 20 μm) were prepared on p-type silicon wafers to drive a high current (initially -6.8 mA at -40 VDS, - 40VGS) in order to detect an explicit reaction to degradation. Subsequently, the OTFT's active layer was encapsulated with 1.5 μm of sputtered polytetrafluoroethylene (PTFE) driving a current of -6.2 mA. A degradation experiment over 4 months in dark laboratory conditions revealed a reduced degradation compared to earlier experiments. The threshold voltage shifted in positive direction suggesting degradation only from oxygen. Obviously, the degradation from humidity was blocked. Otherwise, it would have caused a negative threshold voltage shift.","PeriodicalId":436133,"journal":{"name":"Polytronic 2005 - 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Encapsulating the active Layer of organic Thin-Film Transistors\",\"authors\":\"C. Pannemann, T. Diekmann, U. Hilleringmann, U. Schurmann, M. Scharnberg, V. Zaporojtchenko, R. Adelung, F. Faupel\",\"doi\":\"10.1109/POLYTR.2005.1596488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic thin-film transistors (OTFTs) with W = 1000 μm and L = 1 μm were produced with a high batch reproducibility of the on-current of -63.3 μA +/- 17 μA (-40 VDS, - 40VGS) and the threshold voltage of 1.3 V +/- 1.44V. Unprotected organic devices suffer from degradation due to water damp and oxygen incorporation. To validate the function of an OTFT capsulation, interdigital transistor structures (W = 46.8cm, L = 20 μm) were prepared on p-type silicon wafers to drive a high current (initially -6.8 mA at -40 VDS, - 40VGS) in order to detect an explicit reaction to degradation. Subsequently, the OTFT's active layer was encapsulated with 1.5 μm of sputtered polytetrafluoroethylene (PTFE) driving a current of -6.2 mA. A degradation experiment over 4 months in dark laboratory conditions revealed a reduced degradation compared to earlier experiments. The threshold voltage shifted in positive direction suggesting degradation only from oxygen. Obviously, the degradation from humidity was blocked. Otherwise, it would have caused a negative threshold voltage shift.\",\"PeriodicalId\":436133,\"journal\":{\"name\":\"Polytronic 2005 - 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polytronic 2005 - 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POLYTR.2005.1596488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polytronic 2005 - 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POLYTR.2005.1596488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

制备了W = 1000 μm、L = 1 μm的有机薄膜晶体管(OTFTs),具有良好的批量重现性,导通电流为-63.3 μA +/- 17 μA (-40 VDS、- 40VGS),阈值电压为1.3 V +/- 1.44V。无保护的有机装置由于受潮和氧气的掺入而退化。为了验证OTFT封装的功能,在p型硅片上制备了数字间晶体管结构(W = 46.8cm, L = 20 μm),以驱动高电流(最初为-6.8 mA, -40 VDS, - 40VGS),以检测对降解的显式反应。随后,用1.5 μm的溅射聚四氟乙烯(PTFE)封装OTFT的有源层,驱动电流为-6.2 mA。在黑暗的实验室条件下进行的为期4个月的降解实验显示,与早期的实验相比,降解程度有所降低。阈值电压向正方向移动,表明只能由氧气降解。显然,湿度的降解被阻止了。否则,它会引起负的阈值电压位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Encapsulating the active Layer of organic Thin-Film Transistors
Organic thin-film transistors (OTFTs) with W = 1000 μm and L = 1 μm were produced with a high batch reproducibility of the on-current of -63.3 μA +/- 17 μA (-40 VDS, - 40VGS) and the threshold voltage of 1.3 V +/- 1.44V. Unprotected organic devices suffer from degradation due to water damp and oxygen incorporation. To validate the function of an OTFT capsulation, interdigital transistor structures (W = 46.8cm, L = 20 μm) were prepared on p-type silicon wafers to drive a high current (initially -6.8 mA at -40 VDS, - 40VGS) in order to detect an explicit reaction to degradation. Subsequently, the OTFT's active layer was encapsulated with 1.5 μm of sputtered polytetrafluoroethylene (PTFE) driving a current of -6.2 mA. A degradation experiment over 4 months in dark laboratory conditions revealed a reduced degradation compared to earlier experiments. The threshold voltage shifted in positive direction suggesting degradation only from oxygen. Obviously, the degradation from humidity was blocked. Otherwise, it would have caused a negative threshold voltage shift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信