基于圆形结构自组织特征映射的矢量量化图像压缩

T. Yamamoto
{"title":"基于圆形结构自组织特征映射的矢量量化图像压缩","authors":"T. Yamamoto","doi":"10.1109/ICIP.2001.958523","DOIUrl":null,"url":null,"abstract":"We propose a stable and robust vector quantization coding scheme for image compression known as circular self organization feature map (CSOM) by introducing circular structure to a basic codebook. This structure enables the self organization feature map (SOM) method to converge faster, and to learn input vectors more efficiently. The results suggest that CSOM gains approximately 30% speedup in computation time and 0.3 dB in the PSNR compared to the conventional SOM algorithm. In addition, robustness for initial state of a codebook is achieved by CSOM.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vector quantization for image compression using circular structured self-organization feature map\",\"authors\":\"T. Yamamoto\",\"doi\":\"10.1109/ICIP.2001.958523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a stable and robust vector quantization coding scheme for image compression known as circular self organization feature map (CSOM) by introducing circular structure to a basic codebook. This structure enables the self organization feature map (SOM) method to converge faster, and to learn input vectors more efficiently. The results suggest that CSOM gains approximately 30% speedup in computation time and 0.3 dB in the PSNR compared to the conventional SOM algorithm. In addition, robustness for initial state of a codebook is achieved by CSOM.\",\"PeriodicalId\":291827,\"journal\":{\"name\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2001.958523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.958523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过在基本码本中引入圆形结构,提出了一种稳定鲁棒的矢量量化图像压缩编码方案——圆形自组织特征映射(CSOM)。这种结构使得自组织特征映射(SOM)方法收敛速度更快,并且更有效地学习输入向量。结果表明,与传统的SOM算法相比,CSOM算法的计算时间提高了约30%,PSNR提高了0.3 dB。此外,该算法还实现了码本初始状态的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vector quantization for image compression using circular structured self-organization feature map
We propose a stable and robust vector quantization coding scheme for image compression known as circular self organization feature map (CSOM) by introducing circular structure to a basic codebook. This structure enables the self organization feature map (SOM) method to converge faster, and to learn input vectors more efficiently. The results suggest that CSOM gains approximately 30% speedup in computation time and 0.3 dB in the PSNR compared to the conventional SOM algorithm. In addition, robustness for initial state of a codebook is achieved by CSOM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信