基于神经网络的抽油机故障诊断

W. Ren, Zhenggang Zhang, Y. Zhao, Zhenghui Zhang
{"title":"基于神经网络的抽油机故障诊断","authors":"W. Ren, Zhenggang Zhang, Y. Zhao, Zhenghui Zhang","doi":"10.1109/ICIA.2004.1373347","DOIUrl":null,"url":null,"abstract":"Since the present backwardness of pump-jack fault diagnosis method and the waste of time and labor, we adopt wavelet network to transform the working current of pump-jacks and get the detail coefficient and then make it fault characteristics. To adjust the parameters of neural network, we adopt the self-tuning learning rate conjugated gradient method to optimize the object function. The application on thirty five pump-jacks indicates that this method can be used on the fault diagnosis of pump-jacks with the accuracy over ninety five percent.","PeriodicalId":297178,"journal":{"name":"International Conference on Information Acquisition, 2004. Proceedings.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fault diagnosis of pump-jack based on neural network\",\"authors\":\"W. Ren, Zhenggang Zhang, Y. Zhao, Zhenghui Zhang\",\"doi\":\"10.1109/ICIA.2004.1373347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the present backwardness of pump-jack fault diagnosis method and the waste of time and labor, we adopt wavelet network to transform the working current of pump-jacks and get the detail coefficient and then make it fault characteristics. To adjust the parameters of neural network, we adopt the self-tuning learning rate conjugated gradient method to optimize the object function. The application on thirty five pump-jacks indicates that this method can be used on the fault diagnosis of pump-jacks with the accuracy over ninety five percent.\",\"PeriodicalId\":297178,\"journal\":{\"name\":\"International Conference on Information Acquisition, 2004. Proceedings.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Acquisition, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIA.2004.1373347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Acquisition, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIA.2004.1373347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对目前抽油机故障诊断方法的落后和费时费力的问题,采用小波网络对抽油机工作电流进行变换,得到细节系数,进而得到故障特征。为了调整神经网络的参数,我们采用自调整学习率共轭梯度法对目标函数进行优化。在35台抽油机上的应用表明,该方法可用于抽油机的故障诊断,准确率达95%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault diagnosis of pump-jack based on neural network
Since the present backwardness of pump-jack fault diagnosis method and the waste of time and labor, we adopt wavelet network to transform the working current of pump-jacks and get the detail coefficient and then make it fault characteristics. To adjust the parameters of neural network, we adopt the self-tuning learning rate conjugated gradient method to optimize the object function. The application on thirty five pump-jacks indicates that this method can be used on the fault diagnosis of pump-jacks with the accuracy over ninety five percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信