{"title":"番茄diff:基于去噪扩散模型的番茄切分方法*","authors":"Marija Ivanovska, Vitomir Štruc, J. Pers","doi":"10.23919/MVA57639.2023.10215774","DOIUrl":null,"url":null,"abstract":"Artificial intelligence applications enable farmers to optimize crop growth and production while reducing costs and environmental impact. Computer vision-based algorithms in particular, are commonly used for fruit segmentation, enabling in-depth analysis of the harvest quality and accurate yield estimation. In this paper, we propose TomatoDIFF, a novel diffusion-based model for semantic segmentation of on-plant tomatoes. When evaluated against other competitive methods, our model demonstrates state-of-the-art (SOTA) performance, even in challenging environments with highly occluded fruits. Additionally, we introduce Tomatopia, a new, large and challenging dataset of greenhouse tomatoes. The dataset comprises high-resolution RGB-D images and pixel-level annotations of the fruits. The source code of TomatoDIFF and Tomatopia are available at https://github.com/MIvanovska/TomatoDIFF.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"TomatoDIFF: On–plant Tomato Segmentation with Denoising Diffusion Models *\",\"authors\":\"Marija Ivanovska, Vitomir Štruc, J. Pers\",\"doi\":\"10.23919/MVA57639.2023.10215774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence applications enable farmers to optimize crop growth and production while reducing costs and environmental impact. Computer vision-based algorithms in particular, are commonly used for fruit segmentation, enabling in-depth analysis of the harvest quality and accurate yield estimation. In this paper, we propose TomatoDIFF, a novel diffusion-based model for semantic segmentation of on-plant tomatoes. When evaluated against other competitive methods, our model demonstrates state-of-the-art (SOTA) performance, even in challenging environments with highly occluded fruits. Additionally, we introduce Tomatopia, a new, large and challenging dataset of greenhouse tomatoes. The dataset comprises high-resolution RGB-D images and pixel-level annotations of the fruits. The source code of TomatoDIFF and Tomatopia are available at https://github.com/MIvanovska/TomatoDIFF.\",\"PeriodicalId\":338734,\"journal\":{\"name\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA57639.2023.10215774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TomatoDIFF: On–plant Tomato Segmentation with Denoising Diffusion Models *
Artificial intelligence applications enable farmers to optimize crop growth and production while reducing costs and environmental impact. Computer vision-based algorithms in particular, are commonly used for fruit segmentation, enabling in-depth analysis of the harvest quality and accurate yield estimation. In this paper, we propose TomatoDIFF, a novel diffusion-based model for semantic segmentation of on-plant tomatoes. When evaluated against other competitive methods, our model demonstrates state-of-the-art (SOTA) performance, even in challenging environments with highly occluded fruits. Additionally, we introduce Tomatopia, a new, large and challenging dataset of greenhouse tomatoes. The dataset comprises high-resolution RGB-D images and pixel-level annotations of the fruits. The source code of TomatoDIFF and Tomatopia are available at https://github.com/MIvanovska/TomatoDIFF.