平行广义张量乘法

Can Kavaklioglu, A. Cemgil
{"title":"平行广义张量乘法","authors":"Can Kavaklioglu, A. Cemgil","doi":"10.1109/SIU.2012.6204612","DOIUrl":null,"url":null,"abstract":"Tensor factorization is a frequently used modelling tool in problems involving large amounts of n-way data. Probabilistic Latent Tensor Factorization framework provides a probabilistic approach to solve the tensor factorization problem. The iterative algorithms use generalized tensor multiplication operations involving large amounts of arithmetic operations with similar structures. This work shows the performance improvements achieved by performing the independent operations on a graphical processing unit (GPU).","PeriodicalId":256154,"journal":{"name":"2012 20th Signal Processing and Communications Applications Conference (SIU)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel generalized tensor multiplication\",\"authors\":\"Can Kavaklioglu, A. Cemgil\",\"doi\":\"10.1109/SIU.2012.6204612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tensor factorization is a frequently used modelling tool in problems involving large amounts of n-way data. Probabilistic Latent Tensor Factorization framework provides a probabilistic approach to solve the tensor factorization problem. The iterative algorithms use generalized tensor multiplication operations involving large amounts of arithmetic operations with similar structures. This work shows the performance improvements achieved by performing the independent operations on a graphical processing unit (GPU).\",\"PeriodicalId\":256154,\"journal\":{\"name\":\"2012 20th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 20th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2012.6204612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2012.6204612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

张量分解是在涉及大量n路数据的问题中经常使用的建模工具。概率潜张量分解框架提供了一种解决张量分解问题的概率方法。迭代算法使用广义张量乘法运算,涉及大量具有相似结构的算术运算。这项工作显示了通过在图形处理单元(GPU)上执行独立操作所实现的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel generalized tensor multiplication
Tensor factorization is a frequently used modelling tool in problems involving large amounts of n-way data. Probabilistic Latent Tensor Factorization framework provides a probabilistic approach to solve the tensor factorization problem. The iterative algorithms use generalized tensor multiplication operations involving large amounts of arithmetic operations with similar structures. This work shows the performance improvements achieved by performing the independent operations on a graphical processing unit (GPU).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信