{"title":"基于神经网络的卫星姿态控制子系统作动器故障诊断","authors":"Zhongqi Li, Liying Ma, K. Khorasani","doi":"10.1109/IJCNN.2007.4371378","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to develop a neural network-based scheme for fault detection and isolation in reaction wheels (actuators) of a satellite. To achieve this objective, three neural networks are developed for modeling the dynamics of a reaction wheel on all the three axes separately. A recurrent neural network with backpropagation training algorithm is considered for representing the highly nonlinear dynamics of the actuator. The capabilities and potential of the proposed neural network-based fault detection and isolation (FDI) methodology is investigated and a comparative study is conducted with the performance of a generalized Luenberger observer-based scheme. Simulation results demonstrate clearly the advantages of our proposed neural network scheme studied in this paper.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Fault Diagnosis of an Actuator in the Attitude Control Subsystem of a Satellite using Neural Networks\",\"authors\":\"Zhongqi Li, Liying Ma, K. Khorasani\",\"doi\":\"10.1109/IJCNN.2007.4371378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this paper is to develop a neural network-based scheme for fault detection and isolation in reaction wheels (actuators) of a satellite. To achieve this objective, three neural networks are developed for modeling the dynamics of a reaction wheel on all the three axes separately. A recurrent neural network with backpropagation training algorithm is considered for representing the highly nonlinear dynamics of the actuator. The capabilities and potential of the proposed neural network-based fault detection and isolation (FDI) methodology is investigated and a comparative study is conducted with the performance of a generalized Luenberger observer-based scheme. Simulation results demonstrate clearly the advantages of our proposed neural network scheme studied in this paper.\",\"PeriodicalId\":350091,\"journal\":{\"name\":\"2007 International Joint Conference on Neural Networks\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2007.4371378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fault Diagnosis of an Actuator in the Attitude Control Subsystem of a Satellite using Neural Networks
The goal of this paper is to develop a neural network-based scheme for fault detection and isolation in reaction wheels (actuators) of a satellite. To achieve this objective, three neural networks are developed for modeling the dynamics of a reaction wheel on all the three axes separately. A recurrent neural network with backpropagation training algorithm is considered for representing the highly nonlinear dynamics of the actuator. The capabilities and potential of the proposed neural network-based fault detection and isolation (FDI) methodology is investigated and a comparative study is conducted with the performance of a generalized Luenberger observer-based scheme. Simulation results demonstrate clearly the advantages of our proposed neural network scheme studied in this paper.