声能分布对薄膜电声谐振器液中灵敏度的影响

T. Mirea, J. Olivares, M. Clement, E. Iborra
{"title":"声能分布对薄膜电声谐振器液中灵敏度的影响","authors":"T. Mirea, J. Olivares, M. Clement, E. Iborra","doi":"10.1109/EFTF.2018.8409014","DOIUrl":null,"url":null,"abstract":"In contrast to quartz crystal microbalances, the sensitivity of thin film bulk acoustic wave resonators (FBARs) is strongly dependent on all layers composing the composite structure. Previous studies of the pure mass sensitivity of suspended FBARs, proved that placing low acoustic impedance materials at the sensing surface of the device can enhance their sensitivity by carefully controlling the energy trapping effects. Here we extend those studies by investigating if the in-liquid sensitivity of shear-mode AlN-based solidly mounted resonators (SMRs), working at 2 GHz, display a similar dependence on the device configuration (top electrode thickness and material). We use the finite element method (FEM) and experimental results to demonstrate that if one is restricted by the readout circuit to a certain resonant frequency, the sensitivity of the devices (particularly in-liquid sensors or biosensors) can be boosted by proper design while preserving the initial frequency. This is possible since the variations in sensitivity are strongly dependent on the energy distribution within the whole resonant structure.","PeriodicalId":395582,"journal":{"name":"2018 European Frequency and Time Forum (EFTF)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of the acoustic energy distribution on the in-liquid sensitivity of thin film electroacoustic resonators\",\"authors\":\"T. Mirea, J. Olivares, M. Clement, E. Iborra\",\"doi\":\"10.1109/EFTF.2018.8409014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In contrast to quartz crystal microbalances, the sensitivity of thin film bulk acoustic wave resonators (FBARs) is strongly dependent on all layers composing the composite structure. Previous studies of the pure mass sensitivity of suspended FBARs, proved that placing low acoustic impedance materials at the sensing surface of the device can enhance their sensitivity by carefully controlling the energy trapping effects. Here we extend those studies by investigating if the in-liquid sensitivity of shear-mode AlN-based solidly mounted resonators (SMRs), working at 2 GHz, display a similar dependence on the device configuration (top electrode thickness and material). We use the finite element method (FEM) and experimental results to demonstrate that if one is restricted by the readout circuit to a certain resonant frequency, the sensitivity of the devices (particularly in-liquid sensors or biosensors) can be boosted by proper design while preserving the initial frequency. This is possible since the variations in sensitivity are strongly dependent on the energy distribution within the whole resonant structure.\",\"PeriodicalId\":395582,\"journal\":{\"name\":\"2018 European Frequency and Time Forum (EFTF)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 European Frequency and Time Forum (EFTF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EFTF.2018.8409014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 European Frequency and Time Forum (EFTF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EFTF.2018.8409014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与石英晶体微天平相比,薄膜体声波谐振器(fbar)的灵敏度强烈依赖于构成复合结构的所有层。以往对悬浮fbar的纯质量灵敏度的研究证明,在器件的传感表面放置低声阻抗材料可以通过仔细控制能量捕获效应来提高其灵敏度。在这里,我们通过研究在2 GHz工作的剪切模式铝基固体安装谐振器(smr)的液体灵敏度是否与器件配置(顶电极厚度和材料)有类似的依赖关系来扩展这些研究。我们使用有限元方法和实验结果证明,如果读出电路限制在一定的谐振频率,通过适当的设计可以在保持初始频率的情况下提高器件(特别是液体传感器或生物传感器)的灵敏度。这是可能的,因为灵敏度的变化强烈地依赖于整个谐振结构内的能量分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of the acoustic energy distribution on the in-liquid sensitivity of thin film electroacoustic resonators
In contrast to quartz crystal microbalances, the sensitivity of thin film bulk acoustic wave resonators (FBARs) is strongly dependent on all layers composing the composite structure. Previous studies of the pure mass sensitivity of suspended FBARs, proved that placing low acoustic impedance materials at the sensing surface of the device can enhance their sensitivity by carefully controlling the energy trapping effects. Here we extend those studies by investigating if the in-liquid sensitivity of shear-mode AlN-based solidly mounted resonators (SMRs), working at 2 GHz, display a similar dependence on the device configuration (top electrode thickness and material). We use the finite element method (FEM) and experimental results to demonstrate that if one is restricted by the readout circuit to a certain resonant frequency, the sensitivity of the devices (particularly in-liquid sensors or biosensors) can be boosted by proper design while preserving the initial frequency. This is possible since the variations in sensitivity are strongly dependent on the energy distribution within the whole resonant structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信