基于聚类检索的版本化文档搜索混合索引

Xin Jin, Daniel Agun, Tao Yang, Qinghao Wu, Yifan Shen, Susen Zhao
{"title":"基于聚类检索的版本化文档搜索混合索引","authors":"Xin Jin, Daniel Agun, Tao Yang, Qinghao Wu, Yifan Shen, Susen Zhao","doi":"10.1145/2983323.2983733","DOIUrl":null,"url":null,"abstract":"The previous two-phase method for searching versioned documents seeks a cost tradeoff by using non-positional information to rank document versions first. The second phase then re-ranks top document versions using positional information with fragment-based index compression. This paper proposes an alternative approach that uses cluster-based retrieval to quickly narrow the search scope guided by version representatives at Phase 1 and develops a hybrid index structure with adaptive runtime data traversal to speed up Phase 2 search. The hybrid scheme exploits the advantages of forward index and inverted index based on the term characteristics to minimize the time in extracting positional and other feature information during runtime search. This paper compares several indexing and data traversal options with different time and space tradeoffs and describes evaluation results to demonstrate their effectiveness. The experiment results show that the proposed scheme can be up-to about 4x as fast as the previous work on solid state drives while retaining good relevance.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Hybrid Indexing for Versioned Document Search with Cluster-based Retrieval\",\"authors\":\"Xin Jin, Daniel Agun, Tao Yang, Qinghao Wu, Yifan Shen, Susen Zhao\",\"doi\":\"10.1145/2983323.2983733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The previous two-phase method for searching versioned documents seeks a cost tradeoff by using non-positional information to rank document versions first. The second phase then re-ranks top document versions using positional information with fragment-based index compression. This paper proposes an alternative approach that uses cluster-based retrieval to quickly narrow the search scope guided by version representatives at Phase 1 and develops a hybrid index structure with adaptive runtime data traversal to speed up Phase 2 search. The hybrid scheme exploits the advantages of forward index and inverted index based on the term characteristics to minimize the time in extracting positional and other feature information during runtime search. This paper compares several indexing and data traversal options with different time and space tradeoffs and describes evaluation results to demonstrate their effectiveness. The experiment results show that the proposed scheme can be up-to about 4x as fast as the previous work on solid state drives while retaining good relevance.\",\"PeriodicalId\":250808,\"journal\":{\"name\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983323.2983733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

先前搜索版本文档的两阶段方法通过使用非位置信息首先对文档版本进行排序来寻求成本权衡。然后,第二阶段使用基于片段的索引压缩的位置信息对顶级文档版本重新排序。本文提出了一种替代方法,在第一阶段使用基于聚类的检索来快速缩小由版本代表指导的搜索范围,并开发了一种具有自适应运行时数据遍历的混合索引结构来加快第二阶段的搜索速度。该混合方案利用了基于词特征的正索引和倒排索引的优点,最大限度地减少了在运行时搜索过程中提取位置和其他特征信息的时间。本文比较了几种具有不同时间和空间权衡的索引和数据遍历选项,并描述了评估结果来证明它们的有效性。实验结果表明,所提出的方案在保持良好相关性的同时,可以比以前在固态驱动器上的工作快4倍左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Indexing for Versioned Document Search with Cluster-based Retrieval
The previous two-phase method for searching versioned documents seeks a cost tradeoff by using non-positional information to rank document versions first. The second phase then re-ranks top document versions using positional information with fragment-based index compression. This paper proposes an alternative approach that uses cluster-based retrieval to quickly narrow the search scope guided by version representatives at Phase 1 and develops a hybrid index structure with adaptive runtime data traversal to speed up Phase 2 search. The hybrid scheme exploits the advantages of forward index and inverted index based on the term characteristics to minimize the time in extracting positional and other feature information during runtime search. This paper compares several indexing and data traversal options with different time and space tradeoffs and describes evaluation results to demonstrate their effectiveness. The experiment results show that the proposed scheme can be up-to about 4x as fast as the previous work on solid state drives while retaining good relevance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信