用人工蜂群优化改进动态随机建模参数估计

Kajornvut Ounjai, B. Kaewkamnerdpong, Chailerd Pichitpornchai
{"title":"用人工蜂群优化改进动态随机建模参数估计","authors":"Kajornvut Ounjai, B. Kaewkamnerdpong, Chailerd Pichitpornchai","doi":"10.1109/ICIEV.2015.7333980","DOIUrl":null,"url":null,"abstract":"Dynamic Causal Modeling (DCM) for fMRI was first proposed to estimate brain connectivity from fMRI data. However, the parameter estimation with Expectation Maximization (EM) method in DCM is prone to local optima. To improve the performance of parameter estimation, this study proposed a hybrid method that integrates the concept of Artificial Bee Colony (ABC) optimization with generic EM used in DCM. From the investigation on real fMRI dataset, the results can indicate that the proposed method could provide higher opportunity to avoid local optimal solution and obtain better final outputs when compared with generic EM. ABC-EM has shown the potential to be a candidate algorithm for DCM estimate brain connectivity for complex experimental tasks involving large number of brain regions and stimuli. Even though the computation time may be concerned, the design of ABC-EM can support parallel computing. The use of ABC-EM on parallel computing system could reduce the computation time.","PeriodicalId":367355,"journal":{"name":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving parameter estimation in Dynamic Casual Modeling with Artificial Bee Colony optimization\",\"authors\":\"Kajornvut Ounjai, B. Kaewkamnerdpong, Chailerd Pichitpornchai\",\"doi\":\"10.1109/ICIEV.2015.7333980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic Causal Modeling (DCM) for fMRI was first proposed to estimate brain connectivity from fMRI data. However, the parameter estimation with Expectation Maximization (EM) method in DCM is prone to local optima. To improve the performance of parameter estimation, this study proposed a hybrid method that integrates the concept of Artificial Bee Colony (ABC) optimization with generic EM used in DCM. From the investigation on real fMRI dataset, the results can indicate that the proposed method could provide higher opportunity to avoid local optimal solution and obtain better final outputs when compared with generic EM. ABC-EM has shown the potential to be a candidate algorithm for DCM estimate brain connectivity for complex experimental tasks involving large number of brain regions and stimuli. Even though the computation time may be concerned, the design of ABC-EM can support parallel computing. The use of ABC-EM on parallel computing system could reduce the computation time.\",\"PeriodicalId\":367355,\"journal\":{\"name\":\"2015 International Conference on Informatics, Electronics & Vision (ICIEV)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Informatics, Electronics & Vision (ICIEV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEV.2015.7333980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEV.2015.7333980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态因果模型(DCM)首次被提出,用于从功能磁共振成像数据估计大脑连接。然而,基于期望最大化方法的DCM参数估计容易出现局部最优。为了提高参数估计的性能,本研究提出了一种将人工蜂群(ABC)优化的概念与DCM中通用的EM相结合的混合方法。通过对真实fMRI数据集的研究,结果表明,与一般EM相比,本文提出的方法有更高的机会避免局部最优解,并获得更好的最终输出。ABC-EM已显示出在涉及大量脑区和刺激的复杂实验任务中,作为DCM估计脑连通性的候选算法的潜力。尽管计算时间可能有问题,但ABC-EM的设计可以支持并行计算。在并行计算系统中使用ABC-EM可以减少计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving parameter estimation in Dynamic Casual Modeling with Artificial Bee Colony optimization
Dynamic Causal Modeling (DCM) for fMRI was first proposed to estimate brain connectivity from fMRI data. However, the parameter estimation with Expectation Maximization (EM) method in DCM is prone to local optima. To improve the performance of parameter estimation, this study proposed a hybrid method that integrates the concept of Artificial Bee Colony (ABC) optimization with generic EM used in DCM. From the investigation on real fMRI dataset, the results can indicate that the proposed method could provide higher opportunity to avoid local optimal solution and obtain better final outputs when compared with generic EM. ABC-EM has shown the potential to be a candidate algorithm for DCM estimate brain connectivity for complex experimental tasks involving large number of brain regions and stimuli. Even though the computation time may be concerned, the design of ABC-EM can support parallel computing. The use of ABC-EM on parallel computing system could reduce the computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信