使用条件随机场的活动识别

Megha Agarwal, Peter A. Flach
{"title":"使用条件随机场的活动识别","authors":"Megha Agarwal, Peter A. Flach","doi":"10.1145/2790044.2790045","DOIUrl":null,"url":null,"abstract":"Activity Recognition is an integral component of ubiquitous computing. Recognizing an activity is a challenging task since activities can be concurrent, interleaved or ambiguous and can consist of multiple actors (which would require parallel activity recognition). This paper investigates how the discriminative nature of Conditional Random Fields (CRF) can be exploited to enhance the accuracy of recognizing activities when compared to that achieved using generative models. It aims to apply CRF to recognize complex activities, analyze the model trained by CRF and evaluate the performance of CRF against existing models using Stochastic Gradient Descent (which is suitable for online learning).","PeriodicalId":351171,"journal":{"name":"Proceedings of the 2nd international Workshop on Sensor-based Activity Recognition and Interaction","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Activity recognition using conditional random field\",\"authors\":\"Megha Agarwal, Peter A. Flach\",\"doi\":\"10.1145/2790044.2790045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Activity Recognition is an integral component of ubiquitous computing. Recognizing an activity is a challenging task since activities can be concurrent, interleaved or ambiguous and can consist of multiple actors (which would require parallel activity recognition). This paper investigates how the discriminative nature of Conditional Random Fields (CRF) can be exploited to enhance the accuracy of recognizing activities when compared to that achieved using generative models. It aims to apply CRF to recognize complex activities, analyze the model trained by CRF and evaluate the performance of CRF against existing models using Stochastic Gradient Descent (which is suitable for online learning).\",\"PeriodicalId\":351171,\"journal\":{\"name\":\"Proceedings of the 2nd international Workshop on Sensor-based Activity Recognition and Interaction\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd international Workshop on Sensor-based Activity Recognition and Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2790044.2790045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd international Workshop on Sensor-based Activity Recognition and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2790044.2790045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

活动识别是普适计算的重要组成部分。识别活动是一项具有挑战性的任务,因为活动可以是并发的、交错的或模糊的,并且可以由多个参与者组成(这需要并行的活动识别)。本文研究了与使用生成模型相比,如何利用条件随机场(CRF)的判别性来提高识别活动的准确性。它的目标是应用CRF来识别复杂的活动,分析由CRF训练的模型,并使用随机梯度下降(适合在线学习)来评估CRF与现有模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activity recognition using conditional random field
Activity Recognition is an integral component of ubiquitous computing. Recognizing an activity is a challenging task since activities can be concurrent, interleaved or ambiguous and can consist of multiple actors (which would require parallel activity recognition). This paper investigates how the discriminative nature of Conditional Random Fields (CRF) can be exploited to enhance the accuracy of recognizing activities when compared to that achieved using generative models. It aims to apply CRF to recognize complex activities, analyze the model trained by CRF and evaluate the performance of CRF against existing models using Stochastic Gradient Descent (which is suitable for online learning).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信