基于BiGRU和BiLSTM的探险顾客满意度情感分析

Salsabila Zahirah Pranida, A. Kurniawardhani
{"title":"基于BiGRU和BiLSTM的探险顾客满意度情感分析","authors":"Salsabila Zahirah Pranida, A. Kurniawardhani","doi":"10.24014/ijaidm.v5i1.17361","DOIUrl":null,"url":null,"abstract":"The occurrence of a pandemic caused behavioral changes that occurred in Indonesian society, especially in increasing interest in online purchases. The increased purchases of goods increased the volume of four expeditions, namely: JNE, JNT Express, Sicepat, and Anteraja. To find out the customer satisfaction of the users of the four expeditions automatically, sentiment analysis was conducted based on the thousand tweet data from the opinions of expedition users in three-class categories, which are positive, negative, and neutral. Two deep learning methods were used to analyze the sentiment of expedition customer satisfaction: BiGRU and BiLSTM. The activities conducted during the sentiment analysis were crawling, preprocessing, data labeling, modeling, and evaluation. The performance evaluation results of the two methods use an accuracy matrix over 1,217 test data. The BiGRU method produces an accuracy performance of 71.5% and the BiLSTM method produces an accuracy performance of 66.5%.","PeriodicalId":385582,"journal":{"name":"Indonesian Journal of Artificial Intelligence and Data Mining","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiment Analysis of Expedition Customer Satisfaction using BiGRU and BiLSTM\",\"authors\":\"Salsabila Zahirah Pranida, A. Kurniawardhani\",\"doi\":\"10.24014/ijaidm.v5i1.17361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The occurrence of a pandemic caused behavioral changes that occurred in Indonesian society, especially in increasing interest in online purchases. The increased purchases of goods increased the volume of four expeditions, namely: JNE, JNT Express, Sicepat, and Anteraja. To find out the customer satisfaction of the users of the four expeditions automatically, sentiment analysis was conducted based on the thousand tweet data from the opinions of expedition users in three-class categories, which are positive, negative, and neutral. Two deep learning methods were used to analyze the sentiment of expedition customer satisfaction: BiGRU and BiLSTM. The activities conducted during the sentiment analysis were crawling, preprocessing, data labeling, modeling, and evaluation. The performance evaluation results of the two methods use an accuracy matrix over 1,217 test data. The BiGRU method produces an accuracy performance of 71.5% and the BiLSTM method produces an accuracy performance of 66.5%.\",\"PeriodicalId\":385582,\"journal\":{\"name\":\"Indonesian Journal of Artificial Intelligence and Data Mining\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Artificial Intelligence and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24014/ijaidm.v5i1.17361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24014/ijaidm.v5i1.17361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大流行的发生导致印度尼西亚社会的行为发生变化,特别是对网上购物的兴趣增加。货物购买量的增加增加了四个探险队的数量,即:JNE, JNT Express, Sicepat和Anteraja。为了自动找出四个探险用户的客户满意度,基于探险用户意见的千条推文数据进行情绪分析,分为正面、负面和中性三大类。采用BiGRU和BiLSTM两种深度学习方法对探险顾客满意度情绪进行分析。在情感分析过程中进行的活动包括抓取、预处理、数据标记、建模和评估。两种方法的性能评价结果使用了1217个测试数据的精度矩阵。BiGRU方法的准确率为71.5%,BiLSTM方法的准确率为66.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis of Expedition Customer Satisfaction using BiGRU and BiLSTM
The occurrence of a pandemic caused behavioral changes that occurred in Indonesian society, especially in increasing interest in online purchases. The increased purchases of goods increased the volume of four expeditions, namely: JNE, JNT Express, Sicepat, and Anteraja. To find out the customer satisfaction of the users of the four expeditions automatically, sentiment analysis was conducted based on the thousand tweet data from the opinions of expedition users in three-class categories, which are positive, negative, and neutral. Two deep learning methods were used to analyze the sentiment of expedition customer satisfaction: BiGRU and BiLSTM. The activities conducted during the sentiment analysis were crawling, preprocessing, data labeling, modeling, and evaluation. The performance evaluation results of the two methods use an accuracy matrix over 1,217 test data. The BiGRU method produces an accuracy performance of 71.5% and the BiLSTM method produces an accuracy performance of 66.5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信