H. Bodlaender, C. Groenland, Hugo Jacob, Marcin Pilipczuk, Michal Pilipczuk
{"title":"关于树结构图问题的复杂性","authors":"H. Bodlaender, C. Groenland, Hugo Jacob, Marcin Pilipczuk, Michal Pilipczuk","doi":"10.48550/arXiv.2206.11828","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new class of parameterized problems, which we call XALP: the class of all parameterized problems that can be solved in $f(k)n^{O(1)}$ time and $f(k)\\log n$ space on a non-deterministic Turing Machine with access to an auxiliary stack (with only top element lookup allowed). Various natural problems on `tree-structured graphs' are complete for this class: we show that List Coloring and All-or-Nothing Flow parameterized by treewidth are XALP-complete. Moreover, Independent Set and Dominating Set parameterized by treewidth divided by $\\log n$, and Max Cut parameterized by cliquewidth are also XALP-complete. Besides finding a `natural home' for these problems, we also pave the road for future reductions. We give a number of equivalent characterisations of the class XALP, e.g., XALP is the class of problems solvable by an Alternating Turing Machine whose runs have tree size at most $f(k)n^{O(1)}$ and use $f(k)\\log n$ space. Moreover, we introduce `tree-shaped' variants of Weighted CNF-Satisfiability and Multicolor Clique that are XALP-complete.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On the Complexity of Problems on Tree-structured Graphs\",\"authors\":\"H. Bodlaender, C. Groenland, Hugo Jacob, Marcin Pilipczuk, Michal Pilipczuk\",\"doi\":\"10.48550/arXiv.2206.11828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new class of parameterized problems, which we call XALP: the class of all parameterized problems that can be solved in $f(k)n^{O(1)}$ time and $f(k)\\\\log n$ space on a non-deterministic Turing Machine with access to an auxiliary stack (with only top element lookup allowed). Various natural problems on `tree-structured graphs' are complete for this class: we show that List Coloring and All-or-Nothing Flow parameterized by treewidth are XALP-complete. Moreover, Independent Set and Dominating Set parameterized by treewidth divided by $\\\\log n$, and Max Cut parameterized by cliquewidth are also XALP-complete. Besides finding a `natural home' for these problems, we also pave the road for future reductions. We give a number of equivalent characterisations of the class XALP, e.g., XALP is the class of problems solvable by an Alternating Turing Machine whose runs have tree size at most $f(k)n^{O(1)}$ and use $f(k)\\\\log n$ space. Moreover, we introduce `tree-shaped' variants of Weighted CNF-Satisfiability and Multicolor Clique that are XALP-complete.\",\"PeriodicalId\":137775,\"journal\":{\"name\":\"International Symposium on Parameterized and Exact Computation\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Parameterized and Exact Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.11828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.11828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Complexity of Problems on Tree-structured Graphs
In this paper, we introduce a new class of parameterized problems, which we call XALP: the class of all parameterized problems that can be solved in $f(k)n^{O(1)}$ time and $f(k)\log n$ space on a non-deterministic Turing Machine with access to an auxiliary stack (with only top element lookup allowed). Various natural problems on `tree-structured graphs' are complete for this class: we show that List Coloring and All-or-Nothing Flow parameterized by treewidth are XALP-complete. Moreover, Independent Set and Dominating Set parameterized by treewidth divided by $\log n$, and Max Cut parameterized by cliquewidth are also XALP-complete. Besides finding a `natural home' for these problems, we also pave the road for future reductions. We give a number of equivalent characterisations of the class XALP, e.g., XALP is the class of problems solvable by an Alternating Turing Machine whose runs have tree size at most $f(k)n^{O(1)}$ and use $f(k)\log n$ space. Moreover, we introduce `tree-shaped' variants of Weighted CNF-Satisfiability and Multicolor Clique that are XALP-complete.