MLCatchUp:自动更新Python中已弃用的机器学习api

S. A. Haryono, Ferdian Thung, David Lo, J. Lawall, Lingxiao Jiang
{"title":"MLCatchUp:自动更新Python中已弃用的机器学习api","authors":"S. A. Haryono, Ferdian Thung, David Lo, J. Lawall, Lingxiao Jiang","doi":"10.26226/morressier.613b5418842293c031b5b5cd","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) libraries are gaining vast popularity, especially in the Python programming language. Using the latest version of such libraries is recommended to ensure the best performance and security. When migrating to the latest version of a machine learning library, usages of deprecated APIs need to be updated, which is a time-consuming process. In this paper, we propose MLCatchUp, an automated API usage update tool for deprecated APIs of popular ML libraries written in Python. MLCatchUp automatically infers the required transformation to migrate usages of deprecated API through the differences between the deprecated and updated API signatures. MLCatchUp offers a readable transformation rule in the form of a domain specific language (DSL). We evaluate MLCatchUp using a dataset of 267 real-world Python code containing 551 usages of 68 distinct deprecated APIs, where MLCatchUp achieves 90.7% accuracy. A video demonstration of MLCatchUp is available at https://youtu.be/5NjOPNt5iaA.","PeriodicalId":205629,"journal":{"name":"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MLCatchUp: Automated Update of Deprecated Machine-Learning APIs in Python\",\"authors\":\"S. A. Haryono, Ferdian Thung, David Lo, J. Lawall, Lingxiao Jiang\",\"doi\":\"10.26226/morressier.613b5418842293c031b5b5cd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) libraries are gaining vast popularity, especially in the Python programming language. Using the latest version of such libraries is recommended to ensure the best performance and security. When migrating to the latest version of a machine learning library, usages of deprecated APIs need to be updated, which is a time-consuming process. In this paper, we propose MLCatchUp, an automated API usage update tool for deprecated APIs of popular ML libraries written in Python. MLCatchUp automatically infers the required transformation to migrate usages of deprecated API through the differences between the deprecated and updated API signatures. MLCatchUp offers a readable transformation rule in the form of a domain specific language (DSL). We evaluate MLCatchUp using a dataset of 267 real-world Python code containing 551 usages of 68 distinct deprecated APIs, where MLCatchUp achieves 90.7% accuracy. A video demonstration of MLCatchUp is available at https://youtu.be/5NjOPNt5iaA.\",\"PeriodicalId\":205629,\"journal\":{\"name\":\"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26226/morressier.613b5418842293c031b5b5cd\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26226/morressier.613b5418842293c031b5b5cd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

机器学习(ML)库越来越受欢迎,尤其是在Python编程语言中。建议使用这些库的最新版本,以确保最佳性能和安全性。当迁移到最新版本的机器学习库时,需要更新已弃用的api的用法,这是一个耗时的过程。在本文中,我们提出了MLCatchUp,这是一个自动API使用更新工具,用于使用Python编写的流行ML库中已弃用的API。MLCatchUp通过已弃用和更新的API签名之间的差异,自动推断迁移已弃用API的用法所需的转换。MLCatchUp以领域特定语言(DSL)的形式提供了可读的转换规则。我们使用267个真实Python代码的数据集来评估MLCatchUp,其中包含68个不同的已弃用api的551个用法,其中MLCatchUp达到了90.7%的准确率。MLCatchUp的视频演示可在https://youtu.be/5NjOPNt5iaA上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MLCatchUp: Automated Update of Deprecated Machine-Learning APIs in Python
Machine learning (ML) libraries are gaining vast popularity, especially in the Python programming language. Using the latest version of such libraries is recommended to ensure the best performance and security. When migrating to the latest version of a machine learning library, usages of deprecated APIs need to be updated, which is a time-consuming process. In this paper, we propose MLCatchUp, an automated API usage update tool for deprecated APIs of popular ML libraries written in Python. MLCatchUp automatically infers the required transformation to migrate usages of deprecated API through the differences between the deprecated and updated API signatures. MLCatchUp offers a readable transformation rule in the form of a domain specific language (DSL). We evaluate MLCatchUp using a dataset of 267 real-world Python code containing 551 usages of 68 distinct deprecated APIs, where MLCatchUp achieves 90.7% accuracy. A video demonstration of MLCatchUp is available at https://youtu.be/5NjOPNt5iaA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信