进化数量遗传学

B. Walsh
{"title":"进化数量遗传学","authors":"B. Walsh","doi":"10.1002/0470022620.BBC15","DOIUrl":null,"url":null,"abstract":"Evolutionary quantitative genetics is the study of how complex traits evolve over time. While this field builds on traditional concepts from quantitative genetics widely used by applied breeders and human geneticists (in particular, the inheritance of complex traits), its unique feature is in examining the role of natural selection in changing the population distribution of a complex trait over time. Our review focuses on this role of selection, starting with response under the standard infinitesimal model, in which trait variation is determined by a very large number of loci, each of small effect. We then turn to issues of measuring fitness (and hence natural selection) on both univariate and multivariate traits. We conclude by examining models that treat fitness itself as a complex trait.","PeriodicalId":216924,"journal":{"name":"Handbook of Statistical Genomics","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"180","resultStr":"{\"title\":\"Evolutionary Quantitative Genetics\",\"authors\":\"B. Walsh\",\"doi\":\"10.1002/0470022620.BBC15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolutionary quantitative genetics is the study of how complex traits evolve over time. While this field builds on traditional concepts from quantitative genetics widely used by applied breeders and human geneticists (in particular, the inheritance of complex traits), its unique feature is in examining the role of natural selection in changing the population distribution of a complex trait over time. Our review focuses on this role of selection, starting with response under the standard infinitesimal model, in which trait variation is determined by a very large number of loci, each of small effect. We then turn to issues of measuring fitness (and hence natural selection) on both univariate and multivariate traits. We conclude by examining models that treat fitness itself as a complex trait.\",\"PeriodicalId\":216924,\"journal\":{\"name\":\"Handbook of Statistical Genomics\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"180\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Statistical Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/0470022620.BBC15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Statistical Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/0470022620.BBC15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 180

摘要

进化定量遗传学是研究复杂性状如何随时间进化的学科。虽然这一领域建立在应用育种家和人类遗传学家广泛使用的数量遗传学的传统概念之上(特别是复杂性状的遗传),但其独特之处在于研究自然选择在改变复杂性状随时间的种群分布中的作用。我们的回顾重点是选择的作用,从标准无穷小模型下的响应开始,其中性状变异由非常多的位点决定,每个位点的影响很小。然后我们转向在单变量和多变量特征上测量适合度(因此是自然选择)的问题。我们通过检验将适应性本身视为一种复杂特征的模型来得出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary Quantitative Genetics
Evolutionary quantitative genetics is the study of how complex traits evolve over time. While this field builds on traditional concepts from quantitative genetics widely used by applied breeders and human geneticists (in particular, the inheritance of complex traits), its unique feature is in examining the role of natural selection in changing the population distribution of a complex trait over time. Our review focuses on this role of selection, starting with response under the standard infinitesimal model, in which trait variation is determined by a very large number of loci, each of small effect. We then turn to issues of measuring fitness (and hence natural selection) on both univariate and multivariate traits. We conclude by examining models that treat fitness itself as a complex trait.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信