单基因半群图的基于顶点度的指标

Seda Oğuz Ünal
{"title":"单基因半群图的基于顶点度的指标","authors":"Seda Oğuz Ünal","doi":"10.54286/ikjm.1160312","DOIUrl":null,"url":null,"abstract":"Albertson and the reduced Sombor indices are vertex-degree-based graph invariants that given in [5] and [18], defined as \n \nAlb(G)=\\sum_{uv\\in E(G)}\\left|d_{u}-d_{v}\\right|, SO_{red}(G)=\\sum_{uv\\in E(G)}\\sqrt{(d_{u}-1)^{2}+(d_{v}-1)^{2}}, \n \nrespectively. \n \nIn this work we show that a calculation of Albertson and reduced Sombor index which are vertex-degree-based topological indices, over monogenic semigroup graphs.","PeriodicalId":114258,"journal":{"name":"Ikonion Journal of Mathematics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Vertex-Degree-Based Indices of Monogenic Semigroup Graphs\",\"authors\":\"Seda Oğuz Ünal\",\"doi\":\"10.54286/ikjm.1160312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Albertson and the reduced Sombor indices are vertex-degree-based graph invariants that given in [5] and [18], defined as \\n \\nAlb(G)=\\\\sum_{uv\\\\in E(G)}\\\\left|d_{u}-d_{v}\\\\right|, SO_{red}(G)=\\\\sum_{uv\\\\in E(G)}\\\\sqrt{(d_{u}-1)^{2}+(d_{v}-1)^{2}}, \\n \\nrespectively. \\n \\nIn this work we show that a calculation of Albertson and reduced Sombor index which are vertex-degree-based topological indices, over monogenic semigroup graphs.\",\"PeriodicalId\":114258,\"journal\":{\"name\":\"Ikonion Journal of Mathematics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ikonion Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54286/ikjm.1160312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ikonion Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54286/ikjm.1160312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Albertson和约简Sombor指标是基于顶点度的图不变量,由[5]和[18]给出,分别定义为Alb(G)= \sum _uv{\in E(G) }\left |{d_u-}d_v {}\right |, SO_red{(G)}= \sum _uv {\in E(G) }\sqrt{(d_{u}-1)^{2}+(d_{v}-1)^{2}}。在这项工作中,我们展示了单基因半群图上基于顶点度的拓扑指标Albertson和reduced Sombor指数的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Vertex-Degree-Based Indices of Monogenic Semigroup Graphs
Albertson and the reduced Sombor indices are vertex-degree-based graph invariants that given in [5] and [18], defined as Alb(G)=\sum_{uv\in E(G)}\left|d_{u}-d_{v}\right|, SO_{red}(G)=\sum_{uv\in E(G)}\sqrt{(d_{u}-1)^{2}+(d_{v}-1)^{2}}, respectively. In this work we show that a calculation of Albertson and reduced Sombor index which are vertex-degree-based topological indices, over monogenic semigroup graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信