支持向量机实时入侵检测的在线训练

Zonghua Zhang, Hong Shen
{"title":"支持向量机实时入侵检测的在线训练","authors":"Zonghua Zhang, Hong Shen","doi":"10.1109/AINA.2004.1283970","DOIUrl":null,"url":null,"abstract":"To break the strong assumption that most of the training data for intrusion detectors are readily available with high quality, conventional SVM, robust SVM and one-class SVM are modified respectively in virtue of the idea from online support vector machine (OSVM) in this paper, and their performances are compared with that of the original algorithms. Preliminary experiments with 1998 DARPA BSM data set indicate that the modified SVMs can be trained online and the results outperform the original ones with less support vectors (SVs) and training time without decreasing detection accuracy. Both of these achievements benefit an effective online intrusion detection system significantly.","PeriodicalId":186142,"journal":{"name":"18th International Conference on Advanced Information Networking and Applications, 2004. AINA 2004.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Online training of SVMs for real-time intrusion detection\",\"authors\":\"Zonghua Zhang, Hong Shen\",\"doi\":\"10.1109/AINA.2004.1283970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To break the strong assumption that most of the training data for intrusion detectors are readily available with high quality, conventional SVM, robust SVM and one-class SVM are modified respectively in virtue of the idea from online support vector machine (OSVM) in this paper, and their performances are compared with that of the original algorithms. Preliminary experiments with 1998 DARPA BSM data set indicate that the modified SVMs can be trained online and the results outperform the original ones with less support vectors (SVs) and training time without decreasing detection accuracy. Both of these achievements benefit an effective online intrusion detection system significantly.\",\"PeriodicalId\":186142,\"journal\":{\"name\":\"18th International Conference on Advanced Information Networking and Applications, 2004. AINA 2004.\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Advanced Information Networking and Applications, 2004. AINA 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AINA.2004.1283970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Advanced Information Networking and Applications, 2004. AINA 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINA.2004.1283970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

为了打破大多数入侵探测器训练数据都是高质量现成的强假设,本文根据在线支持向量机(OSVM)的思想,分别对传统支持向量机、鲁棒支持向量机和一类支持向量机进行了改进,并将其性能与原有算法进行了比较。在1998年DARPA BSM数据集上的初步实验表明,改进后的支持向量机可以在线训练,并且在不降低检测精度的前提下,以更少的支持向量(SVs)和训练时间优于原始支持向量机。这两方面的研究成果对有效的在线入侵检测系统具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online training of SVMs for real-time intrusion detection
To break the strong assumption that most of the training data for intrusion detectors are readily available with high quality, conventional SVM, robust SVM and one-class SVM are modified respectively in virtue of the idea from online support vector machine (OSVM) in this paper, and their performances are compared with that of the original algorithms. Preliminary experiments with 1998 DARPA BSM data set indicate that the modified SVMs can be trained online and the results outperform the original ones with less support vectors (SVs) and training time without decreasing detection accuracy. Both of these achievements benefit an effective online intrusion detection system significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信