Egnet:一种新的边缘导向实例分割网络

Kaiwen Du, Xiao Wang, Y. Yan, Yang Lu, Hanzi Wang
{"title":"Egnet:一种新的边缘导向实例分割网络","authors":"Kaiwen Du, Xiao Wang, Y. Yan, Yang Lu, Hanzi Wang","doi":"10.1109/ICIP46576.2022.9897497","DOIUrl":null,"url":null,"abstract":"Edge information plays a significant role in instance segmentation. However, many instance segmentation methods directly perform pixel-wise classification via fully convolutional networks, which may ignore object edges. In this paper, we propose a novel Edge Guided Network (EGNet), which exploits edge information to improve the mask accuracy, for instance segmentation. Specifically, we propose an edge branch to extract edge information. Then, we use edge information as guidance and fuse it with mask features, in order to enrich the mask features. Furthermore, we propose a Spatial Attention (SA) module and add it to the backbone of our EGNet, enabling the network to focus more on foreground objects. In addition, we incorporate a Semantic Enhancement (SE) module into the edge branch, aiming to obtain additional global context information. Experimental results on the COCO 2017 dataset show the effectiveness of the proposed EGNet.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Egnet: A Novel Edge Guided Network for Instance Segmentation\",\"authors\":\"Kaiwen Du, Xiao Wang, Y. Yan, Yang Lu, Hanzi Wang\",\"doi\":\"10.1109/ICIP46576.2022.9897497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge information plays a significant role in instance segmentation. However, many instance segmentation methods directly perform pixel-wise classification via fully convolutional networks, which may ignore object edges. In this paper, we propose a novel Edge Guided Network (EGNet), which exploits edge information to improve the mask accuracy, for instance segmentation. Specifically, we propose an edge branch to extract edge information. Then, we use edge information as guidance and fuse it with mask features, in order to enrich the mask features. Furthermore, we propose a Spatial Attention (SA) module and add it to the backbone of our EGNet, enabling the network to focus more on foreground objects. In addition, we incorporate a Semantic Enhancement (SE) module into the edge branch, aiming to obtain additional global context information. Experimental results on the COCO 2017 dataset show the effectiveness of the proposed EGNet.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9897497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

边缘信息在实例分割中起着重要的作用。然而,许多实例分割方法直接通过全卷积网络执行逐像素分类,这可能会忽略对象的边缘。在本文中,我们提出了一种新的边缘引导网络(EGNet),它利用边缘信息来提高掩码的精度,例如分割。具体来说,我们提出了一个边缘分支来提取边缘信息。然后,我们以边缘信息为指导,将其与蒙版特征融合,以丰富蒙版特征。此外,我们提出了一个空间注意(SA)模块,并将其添加到EGNet的主干中,使网络能够更多地关注前景对象。此外,我们在边缘分支中加入了语义增强(SE)模块,旨在获得额外的全局上下文信息。在COCO 2017数据集上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Egnet: A Novel Edge Guided Network for Instance Segmentation
Edge information plays a significant role in instance segmentation. However, many instance segmentation methods directly perform pixel-wise classification via fully convolutional networks, which may ignore object edges. In this paper, we propose a novel Edge Guided Network (EGNet), which exploits edge information to improve the mask accuracy, for instance segmentation. Specifically, we propose an edge branch to extract edge information. Then, we use edge information as guidance and fuse it with mask features, in order to enrich the mask features. Furthermore, we propose a Spatial Attention (SA) module and add it to the backbone of our EGNet, enabling the network to focus more on foreground objects. In addition, we incorporate a Semantic Enhancement (SE) module into the edge branch, aiming to obtain additional global context information. Experimental results on the COCO 2017 dataset show the effectiveness of the proposed EGNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信