自动测试数据生成的数据采样分数优先约束

Xiao Ma, J. J. Li, D. Weiss
{"title":"自动测试数据生成的数据采样分数优先约束","authors":"Xiao Ma, J. J. Li, D. Weiss","doi":"10.1109/SNPD.2007.523","DOIUrl":null,"url":null,"abstract":"Many automatic test data generation approaches use constraint solvers to find data values. One problem with this method is that it cannot generate test data when the constraints are not solvable, either because there is no solution or the constraints are too complex. We propose a constraint prioritization method using data sampling scores to generate valid test data even when a set of constraints is not solvable. Our case study illustrates the effectiveness of this method.","PeriodicalId":197058,"journal":{"name":"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Prioritized Constraints with Data Sampling Scores for Automatic Test Data Generation\",\"authors\":\"Xiao Ma, J. J. Li, D. Weiss\",\"doi\":\"10.1109/SNPD.2007.523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many automatic test data generation approaches use constraint solvers to find data values. One problem with this method is that it cannot generate test data when the constraints are not solvable, either because there is no solution or the constraints are too complex. We propose a constraint prioritization method using data sampling scores to generate valid test data even when a set of constraints is not solvable. Our case study illustrates the effectiveness of this method.\",\"PeriodicalId\":197058,\"journal\":{\"name\":\"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNPD.2007.523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2007.523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

许多自动测试数据生成方法使用约束求解器来查找数据值。这种方法的一个问题是,当约束不可解时,它不能生成测试数据,要么是因为没有解,要么是因为约束太复杂。我们提出了一种约束优先排序方法,使用数据采样分数来生成有效的测试数据,即使一组约束是不可解的。我们的案例研究说明了这种方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prioritized Constraints with Data Sampling Scores for Automatic Test Data Generation
Many automatic test data generation approaches use constraint solvers to find data values. One problem with this method is that it cannot generate test data when the constraints are not solvable, either because there is no solution or the constraints are too complex. We propose a constraint prioritization method using data sampling scores to generate valid test data even when a set of constraints is not solvable. Our case study illustrates the effectiveness of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信