基于模糊遗传聚类的HMM/MLP混合语音识别系统判别学习

L. Lazli, M. Laskri, R. Boudour
{"title":"基于模糊遗传聚类的HMM/MLP混合语音识别系统判别学习","authors":"L. Lazli, M. Laskri, R. Boudour","doi":"10.1109/INTELLISYS.2017.8324351","DOIUrl":null,"url":null,"abstract":"We suggest for this study a fuzzy-genetic process for speech clustering, in the framework where the result of fuzzy c-means (FCM) clustering was used as initial population for genetic algorithms (GA). The approach is used in a hybrid HMM/ANN system using an Artificial Neural Network (ANN) to compute the observation probabilities in the states of the Hidden Markov Models (HMM). Experimental results obtained with continuous databases of various sizes in two languages (Arabic and French) show a significantly improved recognition accuracy with respect to the discrete HMM and regular hybrid HMM/ANN model using traditional clustering approaches.","PeriodicalId":131825,"journal":{"name":"2017 Intelligent Systems Conference (IntelliSys)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Discriminant learning for hybrid HMM/MLP speech recognition system using a fuzzy genetic clustering\",\"authors\":\"L. Lazli, M. Laskri, R. Boudour\",\"doi\":\"10.1109/INTELLISYS.2017.8324351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We suggest for this study a fuzzy-genetic process for speech clustering, in the framework where the result of fuzzy c-means (FCM) clustering was used as initial population for genetic algorithms (GA). The approach is used in a hybrid HMM/ANN system using an Artificial Neural Network (ANN) to compute the observation probabilities in the states of the Hidden Markov Models (HMM). Experimental results obtained with continuous databases of various sizes in two languages (Arabic and French) show a significantly improved recognition accuracy with respect to the discrete HMM and regular hybrid HMM/ANN model using traditional clustering approaches.\",\"PeriodicalId\":131825,\"journal\":{\"name\":\"2017 Intelligent Systems Conference (IntelliSys)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Intelligent Systems Conference (IntelliSys)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTELLISYS.2017.8324351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Intelligent Systems Conference (IntelliSys)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELLISYS.2017.8324351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究提出了一种模糊遗传聚类方法,将模糊c均值聚类结果作为遗传算法的初始种群。将该方法应用于隐马尔可夫模型(HMM)和神经网络(ANN)混合系统中,利用人工神经网络(ANN)计算隐马尔可夫模型(HMM)状态下的观测概率。在两种语言(阿拉伯语和法语)的不同规模的连续数据库中获得的实验结果表明,相对于使用传统聚类方法的离散HMM和规则混合HMM/ANN模型,识别精度显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminant learning for hybrid HMM/MLP speech recognition system using a fuzzy genetic clustering
We suggest for this study a fuzzy-genetic process for speech clustering, in the framework where the result of fuzzy c-means (FCM) clustering was used as initial population for genetic algorithms (GA). The approach is used in a hybrid HMM/ANN system using an Artificial Neural Network (ANN) to compute the observation probabilities in the states of the Hidden Markov Models (HMM). Experimental results obtained with continuous databases of various sizes in two languages (Arabic and French) show a significantly improved recognition accuracy with respect to the discrete HMM and regular hybrid HMM/ANN model using traditional clustering approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信