求解COVID-19动态模型的高有限差分法

Amar Megrous
{"title":"求解COVID-19动态模型的高有限差分法","authors":"Amar Megrous","doi":"10.37418/amsj.12.1.16","DOIUrl":null,"url":null,"abstract":"In the present paper, the SIR model tracks the numbers of susceptible, infected and recovered individuals during an epidemic with the help of ordinary differential equations (ODE). First, we give the model formulation of our phenomena. Secondly, a fully discrete difference scheme is derived for the SIR model.At the end of this aper, we give the simulation results of the model. A comparison of the obtained numerical results of both the models is performed in the absence of an exact solution.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE HIGHER FINITE DIFFERENCE METHOD FOR SOLVING THE DYNAMICAL MODEL OF COVID-19\",\"authors\":\"Amar Megrous\",\"doi\":\"10.37418/amsj.12.1.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, the SIR model tracks the numbers of susceptible, infected and recovered individuals during an epidemic with the help of ordinary differential equations (ODE). First, we give the model formulation of our phenomena. Secondly, a fully discrete difference scheme is derived for the SIR model.At the end of this aper, we give the simulation results of the model. A comparison of the obtained numerical results of both the models is performed in the absence of an exact solution.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.12.1.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.1.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,SIR模型在常微分方程(ODE)的帮助下跟踪流行病期间易感、感染和恢复个体的数量。首先,我们给出了这些现象的模型公式。其次,导出了SIR模型的全离散差分格式。本文最后给出了该模型的仿真结果。在没有精确解的情况下,对两种模型得到的数值结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE HIGHER FINITE DIFFERENCE METHOD FOR SOLVING THE DYNAMICAL MODEL OF COVID-19
In the present paper, the SIR model tracks the numbers of susceptible, infected and recovered individuals during an epidemic with the help of ordinary differential equations (ODE). First, we give the model formulation of our phenomena. Secondly, a fully discrete difference scheme is derived for the SIR model.At the end of this aper, we give the simulation results of the model. A comparison of the obtained numerical results of both the models is performed in the absence of an exact solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信