基于深度学习的轻量级森林火灾探测

Rui Fan, Mingtao Pei
{"title":"基于深度学习的轻量级森林火灾探测","authors":"Rui Fan, Mingtao Pei","doi":"10.1109/mlsp52302.2021.9596409","DOIUrl":null,"url":null,"abstract":"Forest fire detection is a challenging problem in computer vision. In this paper, we build a challenging fire dataset which contains images of fire, smoke, and red leaf to better simulate the real forest environment. We propose a lightweight network structure, YOLOv4-Light, for forest fire detection. The original YOLOv4's backbone feature extraction network is replaced by MobileNet, and PANet's standard convolution is replaced by depthwise separable convolution, which improves the detection speed and makes it more suitable for embedded devices. We also adjusted the YoloHead according to the relationship between smoke and flame to reduce the missing rate and false rate. The experimental results show that our YOLOv4-Light achieves good performance for forest fire detection, at the same time, our YOLOv4-Light achieves higher FPS and the model size is reduced by 4 times compared with other algorithms, which makes it easier to implement on embedded devices.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Lightweight Forest Fire Detection Based on Deep Learning\",\"authors\":\"Rui Fan, Mingtao Pei\",\"doi\":\"10.1109/mlsp52302.2021.9596409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forest fire detection is a challenging problem in computer vision. In this paper, we build a challenging fire dataset which contains images of fire, smoke, and red leaf to better simulate the real forest environment. We propose a lightweight network structure, YOLOv4-Light, for forest fire detection. The original YOLOv4's backbone feature extraction network is replaced by MobileNet, and PANet's standard convolution is replaced by depthwise separable convolution, which improves the detection speed and makes it more suitable for embedded devices. We also adjusted the YoloHead according to the relationship between smoke and flame to reduce the missing rate and false rate. The experimental results show that our YOLOv4-Light achieves good performance for forest fire detection, at the same time, our YOLOv4-Light achieves higher FPS and the model size is reduced by 4 times compared with other algorithms, which makes it easier to implement on embedded devices.\",\"PeriodicalId\":156116,\"journal\":{\"name\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mlsp52302.2021.9596409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

森林火灾探测是计算机视觉中的一个具有挑战性的问题。在本文中,我们建立了一个具有挑战性的火灾数据集,该数据集包含火灾、烟雾和红叶图像,以更好地模拟真实的森林环境。我们提出了一个轻量级的网络结构,YOLOv4-Light,用于森林火灾探测。将原有的YOLOv4的骨干特征提取网络替换为MobileNet,将PANet的标准卷积替换为深度可分卷积,提高了检测速度,更适合于嵌入式设备。我们还根据烟雾和火焰的关系对YoloHead进行了调整,以降低漏报率和错误率。实验结果表明,我们的YOLOv4-Light算法在森林火灾检测中取得了良好的性能,同时,与其他算法相比,我们的YOLOv4-Light算法实现了更高的FPS,模型尺寸减小了4倍,使其更容易在嵌入式设备上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lightweight Forest Fire Detection Based on Deep Learning
Forest fire detection is a challenging problem in computer vision. In this paper, we build a challenging fire dataset which contains images of fire, smoke, and red leaf to better simulate the real forest environment. We propose a lightweight network structure, YOLOv4-Light, for forest fire detection. The original YOLOv4's backbone feature extraction network is replaced by MobileNet, and PANet's standard convolution is replaced by depthwise separable convolution, which improves the detection speed and makes it more suitable for embedded devices. We also adjusted the YoloHead according to the relationship between smoke and flame to reduce the missing rate and false rate. The experimental results show that our YOLOv4-Light achieves good performance for forest fire detection, at the same time, our YOLOv4-Light achieves higher FPS and the model size is reduced by 4 times compared with other algorithms, which makes it easier to implement on embedded devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信