杂食动物捕食-食饵模型的动力学分析

Rina Exviani, W. M. Kusumawinahyu, Noor Hidayat
{"title":"杂食动物捕食-食饵模型的动力学分析","authors":"Rina Exviani, W. M. Kusumawinahyu, Noor Hidayat","doi":"10.21776/UB.JELS.2018.008.02.10","DOIUrl":null,"url":null,"abstract":"This article discussed a dynamical analysis on a model of predator-prey Leslie-Gower with omnivores which is modified by Lotka-Volterra model with omnivore. The dynamical analysis is done by determining the equilibrium point with its existing condition and analyzing the local stability of the equilibrium point. Based on the analysis, there are seven points of equilibrium. Three of them always exist while the four others exist under certain conditions. Four points of equilibrium, namely and are unstable, while the others three equilibrium point are local asymptotically stable under certain conditions. Moreover, it’s also conducted numerical simulations to illustrate the analytical. The results of numerical simulations agree with the results of the dynamical analysis. Keywords: local stability, omnivore, predator-prey models, the equilibrium point","PeriodicalId":177289,"journal":{"name":"The Journal of Experimental Life Sciences","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical Analysis of Predator-Prey Model Leslie-Gower with Omnivore\",\"authors\":\"Rina Exviani, W. M. Kusumawinahyu, Noor Hidayat\",\"doi\":\"10.21776/UB.JELS.2018.008.02.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article discussed a dynamical analysis on a model of predator-prey Leslie-Gower with omnivores which is modified by Lotka-Volterra model with omnivore. The dynamical analysis is done by determining the equilibrium point with its existing condition and analyzing the local stability of the equilibrium point. Based on the analysis, there are seven points of equilibrium. Three of them always exist while the four others exist under certain conditions. Four points of equilibrium, namely and are unstable, while the others three equilibrium point are local asymptotically stable under certain conditions. Moreover, it’s also conducted numerical simulations to illustrate the analytical. The results of numerical simulations agree with the results of the dynamical analysis. Keywords: local stability, omnivore, predator-prey models, the equilibrium point\",\"PeriodicalId\":177289,\"journal\":{\"name\":\"The Journal of Experimental Life Sciences\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Experimental Life Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21776/UB.JELS.2018.008.02.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Experimental Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21776/UB.JELS.2018.008.02.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了由Lotka-Volterra模型修正的杂食性捕食者-食饵者Leslie-Gower模型的动力学分析。通过确定平衡点的存在条件和分析平衡点的局部稳定性来进行动力学分析。根据分析,有七个平衡点。其中三个是一直存在的,另外四个是在一定条件下存在的。四个平衡点,即和是不稳定的,而其他三个平衡点在一定条件下是局部渐近稳定的。此外,还进行了数值模拟来说明分析结果。数值模拟结果与动力学分析结果一致。关键词:局部稳定性,杂食动物,捕食-食饵模型,平衡点
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical Analysis of Predator-Prey Model Leslie-Gower with Omnivore
This article discussed a dynamical analysis on a model of predator-prey Leslie-Gower with omnivores which is modified by Lotka-Volterra model with omnivore. The dynamical analysis is done by determining the equilibrium point with its existing condition and analyzing the local stability of the equilibrium point. Based on the analysis, there are seven points of equilibrium. Three of them always exist while the four others exist under certain conditions. Four points of equilibrium, namely and are unstable, while the others three equilibrium point are local asymptotically stable under certain conditions. Moreover, it’s also conducted numerical simulations to illustrate the analytical. The results of numerical simulations agree with the results of the dynamical analysis. Keywords: local stability, omnivore, predator-prey models, the equilibrium point
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信