为Web应用程序生成测试用例的强化学习方法

Xiaoning Chang, Zheheng Liang, Yifei Zhang, Lei Cui, Zhenyue Long, Guoquan Wu, Yu Gao, W. Chen, Jun Wei, Tao Huang
{"title":"为Web应用程序生成测试用例的强化学习方法","authors":"Xiaoning Chang, Zheheng Liang, Yifei Zhang, Lei Cui, Zhenyue Long, Guoquan Wu, Yu Gao, W. Chen, Jun Wei, Tao Huang","doi":"10.1109/AST58925.2023.00006","DOIUrl":null,"url":null,"abstract":"Web applications play an important role in modern society. Quality assurance of web applications requires lots of manual efforts. In this paper, we propose WebQT, an automatic test case generator for web applications based on reinforcement learning. Specifically, to increase testing efficiency, we design a new reward model, which encourages the agent to mimic human testers to interact with the web applications. To alleviate the problem of state redundancy, we further propose a novel state abstraction technique, which can identify different web pages with the same functionality as the same state, and yields a simplified state space. We evaluate WebQT on seven open-source web applications. The experimental results show that WebQT achieves 45.4% more code coverage along with higher efficiency than the state-of-the-art technique. In addition, WebQT also reveals 69 exceptions in 11 real-world web applications.","PeriodicalId":252417,"journal":{"name":"2023 IEEE/ACM International Conference on Automation of Software Test (AST)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Reinforcement Learning Approach to Generating Test Cases for Web Applications\",\"authors\":\"Xiaoning Chang, Zheheng Liang, Yifei Zhang, Lei Cui, Zhenyue Long, Guoquan Wu, Yu Gao, W. Chen, Jun Wei, Tao Huang\",\"doi\":\"10.1109/AST58925.2023.00006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web applications play an important role in modern society. Quality assurance of web applications requires lots of manual efforts. In this paper, we propose WebQT, an automatic test case generator for web applications based on reinforcement learning. Specifically, to increase testing efficiency, we design a new reward model, which encourages the agent to mimic human testers to interact with the web applications. To alleviate the problem of state redundancy, we further propose a novel state abstraction technique, which can identify different web pages with the same functionality as the same state, and yields a simplified state space. We evaluate WebQT on seven open-source web applications. The experimental results show that WebQT achieves 45.4% more code coverage along with higher efficiency than the state-of-the-art technique. In addition, WebQT also reveals 69 exceptions in 11 real-world web applications.\",\"PeriodicalId\":252417,\"journal\":{\"name\":\"2023 IEEE/ACM International Conference on Automation of Software Test (AST)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM International Conference on Automation of Software Test (AST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AST58925.2023.00006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM International Conference on Automation of Software Test (AST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AST58925.2023.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Web应用程序在现代社会中扮演着重要的角色。web应用程序的质量保证需要大量的手工工作。在本文中,我们提出了WebQT,一个基于强化学习的web应用程序自动测试用例生成器。具体来说,为了提高测试效率,我们设计了一个新的奖励模型,鼓励智能体模仿人类测试人员与web应用程序进行交互。为了缓解状态冗余问题,我们进一步提出了一种新的状态抽象技术,该技术可以识别具有相同功能的不同网页作为相同的状态,并产生一个简化的状态空间。我们在七个开源web应用程序上评估了WebQT。实验结果表明,WebQT实现了比现有技术多45.4%的代码覆盖率和更高的效率。此外,WebQT还揭示了11个真实web应用程序中的69个异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Reinforcement Learning Approach to Generating Test Cases for Web Applications
Web applications play an important role in modern society. Quality assurance of web applications requires lots of manual efforts. In this paper, we propose WebQT, an automatic test case generator for web applications based on reinforcement learning. Specifically, to increase testing efficiency, we design a new reward model, which encourages the agent to mimic human testers to interact with the web applications. To alleviate the problem of state redundancy, we further propose a novel state abstraction technique, which can identify different web pages with the same functionality as the same state, and yields a simplified state space. We evaluate WebQT on seven open-source web applications. The experimental results show that WebQT achieves 45.4% more code coverage along with higher efficiency than the state-of-the-art technique. In addition, WebQT also reveals 69 exceptions in 11 real-world web applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信