Fengzhou Fang , Min Lai , Jinshi Wang , Xichun Luo , Jiwang Yan , Yongda Yan
{"title":"纳米切割:机制、实践和未来展望","authors":"Fengzhou Fang , Min Lai , Jinshi Wang , Xichun Luo , Jiwang Yan , Yongda Yan","doi":"10.1016/j.ijmachtools.2022.103905","DOIUrl":null,"url":null,"abstract":"<div><p>Nanometric cutting removes material at nanoscale and generates high-quality surfaces with a nanometric finish. In past decades, it has thrived as a mainstream manufacturing technology to produce critical components to advance scientific discovery and promote innovation in various fields, such as astronomy, aerospace, microelectronics, optics and photonics, biology and quantum technology. Therefore, it is timely to develop a review article capturing such developments and establishing directions for future advancement. This article systematically reviews the fundamental issues such as cutting model, material deformation mechanism and tool wear in nanometric cutting. It also presents the working principles of innovative ion implantation-assisted, laser-assisted and ultrasonic vibration-assisted nanometric cutting methods to overcome the challenges of machining difficult-to-cut materials. Practical techniques for the generation of high-quality complex or structured surfaces are also discussed. Finally, challenges and future perspectives of nanometric cutting, as well as the evolution towards atomic and close-to-atomic scale manufacturing, are outlined.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"178 ","pages":"Article 103905"},"PeriodicalIF":14.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890695522000566/pdfft?md5=31f5f366b2f12a672b693677c823d71b&pid=1-s2.0-S0890695522000566-main.pdf","citationCount":"36","resultStr":"{\"title\":\"Nanometric cutting: Mechanisms, practices and future perspectives\",\"authors\":\"Fengzhou Fang , Min Lai , Jinshi Wang , Xichun Luo , Jiwang Yan , Yongda Yan\",\"doi\":\"10.1016/j.ijmachtools.2022.103905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanometric cutting removes material at nanoscale and generates high-quality surfaces with a nanometric finish. In past decades, it has thrived as a mainstream manufacturing technology to produce critical components to advance scientific discovery and promote innovation in various fields, such as astronomy, aerospace, microelectronics, optics and photonics, biology and quantum technology. Therefore, it is timely to develop a review article capturing such developments and establishing directions for future advancement. This article systematically reviews the fundamental issues such as cutting model, material deformation mechanism and tool wear in nanometric cutting. It also presents the working principles of innovative ion implantation-assisted, laser-assisted and ultrasonic vibration-assisted nanometric cutting methods to overcome the challenges of machining difficult-to-cut materials. Practical techniques for the generation of high-quality complex or structured surfaces are also discussed. Finally, challenges and future perspectives of nanometric cutting, as well as the evolution towards atomic and close-to-atomic scale manufacturing, are outlined.</p></div>\",\"PeriodicalId\":14011,\"journal\":{\"name\":\"International Journal of Machine Tools & Manufacture\",\"volume\":\"178 \",\"pages\":\"Article 103905\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0890695522000566/pdfft?md5=31f5f366b2f12a672b693677c823d71b&pid=1-s2.0-S0890695522000566-main.pdf\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Tools & Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890695522000566\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695522000566","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Nanometric cutting: Mechanisms, practices and future perspectives
Nanometric cutting removes material at nanoscale and generates high-quality surfaces with a nanometric finish. In past decades, it has thrived as a mainstream manufacturing technology to produce critical components to advance scientific discovery and promote innovation in various fields, such as astronomy, aerospace, microelectronics, optics and photonics, biology and quantum technology. Therefore, it is timely to develop a review article capturing such developments and establishing directions for future advancement. This article systematically reviews the fundamental issues such as cutting model, material deformation mechanism and tool wear in nanometric cutting. It also presents the working principles of innovative ion implantation-assisted, laser-assisted and ultrasonic vibration-assisted nanometric cutting methods to overcome the challenges of machining difficult-to-cut materials. Practical techniques for the generation of high-quality complex or structured surfaces are also discussed. Finally, challenges and future perspectives of nanometric cutting, as well as the evolution towards atomic and close-to-atomic scale manufacturing, are outlined.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).