P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez
{"title":"Lanczos对诺特定理的解释","authors":"P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez","doi":"10.18052/WWW.SCIPRESS.COM/BSMASS.11.1","DOIUrl":null,"url":null,"abstract":"If the action is invariant under the infinitesimal transformation then the Noether's theorem permits to construct the corresponding conserved quantity. The Lanczos method accepts that is a new degree of freedom, thus the Euler-Lagrange equation for this new variable gives the Noether's constant of motion.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lanczos approach to Noether's theorem\",\"authors\":\"P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/BSMASS.11.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If the action is invariant under the infinitesimal transformation then the Noether's theorem permits to construct the corresponding conserved quantity. The Lanczos method accepts that is a new degree of freedom, thus the Euler-Lagrange equation for this new variable gives the Noether's constant of motion.\",\"PeriodicalId\":252632,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences and Applications\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/BSMASS.11.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BSMASS.11.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
If the action is invariant under the infinitesimal transformation then the Noether's theorem permits to construct the corresponding conserved quantity. The Lanczos method accepts that is a new degree of freedom, thus the Euler-Lagrange equation for this new variable gives the Noether's constant of motion.