Lanczos对诺特定理的解释

P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez
{"title":"Lanczos对诺特定理的解释","authors":"P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez","doi":"10.18052/WWW.SCIPRESS.COM/BSMASS.11.1","DOIUrl":null,"url":null,"abstract":"If the action is invariant under the infinitesimal transformation then the Noether's theorem permits to construct the corresponding conserved quantity. The Lanczos method accepts that is a new degree of freedom, thus the Euler-Lagrange equation for this new variable gives the Noether's constant of motion.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lanczos approach to Noether's theorem\",\"authors\":\"P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/BSMASS.11.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If the action is invariant under the infinitesimal transformation then the Noether's theorem permits to construct the corresponding conserved quantity. The Lanczos method accepts that is a new degree of freedom, thus the Euler-Lagrange equation for this new variable gives the Noether's constant of motion.\",\"PeriodicalId\":252632,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences and Applications\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/BSMASS.11.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BSMASS.11.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如果作用在无穷小变换下是不变的,那么诺特定理允许构造相应的守恒量。Lanczos方法接受这是一个新的自由度,因此这个新变量的欧拉-拉格朗日方程给出了诺特运动常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lanczos approach to Noether's theorem
If the action is invariant under the infinitesimal transformation then the Noether's theorem permits to construct the corresponding conserved quantity. The Lanczos method accepts that is a new degree of freedom, thus the Euler-Lagrange equation for this new variable gives the Noether's constant of motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信