基于高斯过程回归模型的非线性滤波参数下界

Yuxin Zhao, C. Fritsche, F. Gunnarsson
{"title":"基于高斯过程回归模型的非线性滤波参数下界","authors":"Yuxin Zhao, C. Fritsche, F. Gunnarsson","doi":"10.23919/ICIF.2017.8009640","DOIUrl":null,"url":null,"abstract":"Assessing the fundamental performance limitations in Bayesian filtering can be carried out using the parametric Cramér-Rao bound (CRB). The parametric CRB puts a lower bound on mean square error (MSE) matrix conditioned on a specific state trajectory realization. In this work, we derive the parametric CRB for state-space models, where the measurement equation is modeled by a Gaussian process regression. These models appear, for instance in proximity report-based positioning, where proximity reports are obtained by hard thresholding of received signal strength (RSS) measurements, that are modeled through Gaussian process regression. The proposed parametric CRB is evaluated on selected state trajectories and further compared with the positioning performance obtained by the particle filter. The results corroborate that the positioning accuracy achieved in this framework is close to the parametric CRB.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parametric lower bound for nonlinear filtering based on Gaussian process regression model\",\"authors\":\"Yuxin Zhao, C. Fritsche, F. Gunnarsson\",\"doi\":\"10.23919/ICIF.2017.8009640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assessing the fundamental performance limitations in Bayesian filtering can be carried out using the parametric Cramér-Rao bound (CRB). The parametric CRB puts a lower bound on mean square error (MSE) matrix conditioned on a specific state trajectory realization. In this work, we derive the parametric CRB for state-space models, where the measurement equation is modeled by a Gaussian process regression. These models appear, for instance in proximity report-based positioning, where proximity reports are obtained by hard thresholding of received signal strength (RSS) measurements, that are modeled through Gaussian process regression. The proposed parametric CRB is evaluated on selected state trajectories and further compared with the positioning performance obtained by the particle filter. The results corroborate that the positioning accuracy achieved in this framework is close to the parametric CRB.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

评估贝叶斯滤波的基本性能限制可以使用参数cram - rao界(CRB)进行。参数化CRB给出了均方误差(MSE)矩阵的下界,该下界以特定状态轨迹的实现为条件。在这项工作中,我们推导了状态空间模型的参数CRB,其中测量方程由高斯过程回归建模。例如,这些模型出现在基于接近度报告的定位中,其中接近度报告通过接收信号强度(RSS)测量的硬阈值获得,并通过高斯过程回归建模。在选定的状态轨迹上对所提出的参数CRB进行评估,并进一步与粒子滤波获得的定位性能进行比较。结果表明,该框架下的定位精度接近参数化CRB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric lower bound for nonlinear filtering based on Gaussian process regression model
Assessing the fundamental performance limitations in Bayesian filtering can be carried out using the parametric Cramér-Rao bound (CRB). The parametric CRB puts a lower bound on mean square error (MSE) matrix conditioned on a specific state trajectory realization. In this work, we derive the parametric CRB for state-space models, where the measurement equation is modeled by a Gaussian process regression. These models appear, for instance in proximity report-based positioning, where proximity reports are obtained by hard thresholding of received signal strength (RSS) measurements, that are modeled through Gaussian process regression. The proposed parametric CRB is evaluated on selected state trajectories and further compared with the positioning performance obtained by the particle filter. The results corroborate that the positioning accuracy achieved in this framework is close to the parametric CRB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信