演化最大熵谱估计器的性质

S.I. Shah, L. Chaparro, A. El-Jaroudi
{"title":"演化最大熵谱估计器的性质","authors":"S.I. Shah, L. Chaparro, A. El-Jaroudi","doi":"10.1109/SSAP.1994.572494","DOIUrl":null,"url":null,"abstract":"2. EVOLUTIONARY MAXIMUM ENTROPY ESTIMATION Using maximum entropy spectral analysis and the theThe Wold-Cramer representation [4] of a non-stationary by considering it the output of a linear timevarying system (LTV) with white noise as input: ory of the Wold-Cramer evolutionary spectrum we develop signal is the evolutionary maximum entropy @ME) estimator for non-stationary signals. The EME estimation reduces to the fitting of a time-varying autoregressive model to the Fourier coefficients of the evolutionary spectrum. The model parameters are efficientlv found bv means of the Levinson alH(n, w)ejwndZ(w) (1) gorithm. Just as in the stationary case, the EME estimator provides very good frequency resolution and can be used to obtain autoregressive models. In this paper, we present the EME estimator and discuss some of its properties. Our aim is to show that the EME estimator has analogous properties to the classical ME estimator for stationary signals.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Properties of the Evolutionary Maximum Entropy Spectral Estimator\",\"authors\":\"S.I. Shah, L. Chaparro, A. El-Jaroudi\",\"doi\":\"10.1109/SSAP.1994.572494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2. EVOLUTIONARY MAXIMUM ENTROPY ESTIMATION Using maximum entropy spectral analysis and the theThe Wold-Cramer representation [4] of a non-stationary by considering it the output of a linear timevarying system (LTV) with white noise as input: ory of the Wold-Cramer evolutionary spectrum we develop signal is the evolutionary maximum entropy @ME) estimator for non-stationary signals. The EME estimation reduces to the fitting of a time-varying autoregressive model to the Fourier coefficients of the evolutionary spectrum. The model parameters are efficientlv found bv means of the Levinson alH(n, w)ejwndZ(w) (1) gorithm. Just as in the stationary case, the EME estimator provides very good frequency resolution and can be used to obtain autoregressive models. In this paper, we present the EME estimator and discuss some of its properties. Our aim is to show that the EME estimator has analogous properties to the classical ME estimator for stationary signals.\",\"PeriodicalId\":151571,\"journal\":{\"name\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSAP.1994.572494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

2. 利用最大熵谱分析和非平稳的world - cramer表示[4],将其视为线性时变系统(LTV)的输出,白噪声作为输入,我们开发的信号是非平稳信号的演化最大熵@ME估计器。EME估计可简化为演化谱傅立叶系数的时变自回归模型拟合。利用Levinson alH(n, w)ejwndZ(w)(1)算法的均值有效地求出模型参数。就像在平稳情况下一样,EME估计器提供了非常好的频率分辨率,可以用来获得自回归模型。本文给出了EME估计量,并讨论了它的一些性质。我们的目的是表明,对于平稳信号,EME估计器具有与经典ME估计器类似的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of the Evolutionary Maximum Entropy Spectral Estimator
2. EVOLUTIONARY MAXIMUM ENTROPY ESTIMATION Using maximum entropy spectral analysis and the theThe Wold-Cramer representation [4] of a non-stationary by considering it the output of a linear timevarying system (LTV) with white noise as input: ory of the Wold-Cramer evolutionary spectrum we develop signal is the evolutionary maximum entropy @ME) estimator for non-stationary signals. The EME estimation reduces to the fitting of a time-varying autoregressive model to the Fourier coefficients of the evolutionary spectrum. The model parameters are efficientlv found bv means of the Levinson alH(n, w)ejwndZ(w) (1) gorithm. Just as in the stationary case, the EME estimator provides very good frequency resolution and can be used to obtain autoregressive models. In this paper, we present the EME estimator and discuss some of its properties. Our aim is to show that the EME estimator has analogous properties to the classical ME estimator for stationary signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信