利用辅助任务进行多任务学习的身高和体重估计

Dan Han, Jie Zhang, S. Shan
{"title":"利用辅助任务进行多任务学习的身高和体重估计","authors":"Dan Han, Jie Zhang, S. Shan","doi":"10.1109/IJCB48548.2020.9304855","DOIUrl":null,"url":null,"abstract":"Height and weight, two of the most important biological characteristics of human body, play crucial roles in physical condition estimation. Height and weight estimation with single face image via deep convolutional neural network suffers from poor performance due to lack of labeled data. To address this issue, inspired by the relevance of gender, age, height and weight, we propose an auxiliary-task learning framework, employing multiple relevant tasks to improve the performance of primary tasks. Specifically, gender prediction and age estimation are utilized as auxiliary tasks to assist primary tasks (i.e., height and weight estimation) learning via deep residual auxiliary block. Experiments are conducted on the public VIP-attributes datasets and our private VIPL-MumoFace- WH datasets. Our method outperforms the baseline methods of hard parameter sharing in multi-task learning, demonstrating the effectiveness of auxiliary-task learning framework for height and weight estimation.","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Leveraging Auxiliary Tasks for Height and Weight Estimation by Multi Task Learning\",\"authors\":\"Dan Han, Jie Zhang, S. Shan\",\"doi\":\"10.1109/IJCB48548.2020.9304855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Height and weight, two of the most important biological characteristics of human body, play crucial roles in physical condition estimation. Height and weight estimation with single face image via deep convolutional neural network suffers from poor performance due to lack of labeled data. To address this issue, inspired by the relevance of gender, age, height and weight, we propose an auxiliary-task learning framework, employing multiple relevant tasks to improve the performance of primary tasks. Specifically, gender prediction and age estimation are utilized as auxiliary tasks to assist primary tasks (i.e., height and weight estimation) learning via deep residual auxiliary block. Experiments are conducted on the public VIP-attributes datasets and our private VIPL-MumoFace- WH datasets. Our method outperforms the baseline methods of hard parameter sharing in multi-task learning, demonstrating the effectiveness of auxiliary-task learning framework for height and weight estimation.\",\"PeriodicalId\":417270,\"journal\":{\"name\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB48548.2020.9304855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

身高和体重是人体最重要的两个生物学特征,在身体状况评估中起着至关重要的作用。利用深度卷积神经网络对单张人脸图像进行高度和权重估计,由于缺乏标记数据,其性能较差。为了解决这一问题,受性别、年龄、身高和体重相关性的启发,我们提出了一个辅助任务学习框架,利用多个相关任务来提高主要任务的表现。具体来说,利用性别预测和年龄估计作为辅助任务,通过深度残差辅助块来辅助主要任务(即身高和体重估计)的学习。在公共VIP-attributes数据集和我们的私有VIPL-MumoFace- WH数据集上进行了实验。我们的方法在多任务学习中优于硬参数共享的基线方法,证明了辅助任务学习框架在身高和体重估计方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Auxiliary Tasks for Height and Weight Estimation by Multi Task Learning
Height and weight, two of the most important biological characteristics of human body, play crucial roles in physical condition estimation. Height and weight estimation with single face image via deep convolutional neural network suffers from poor performance due to lack of labeled data. To address this issue, inspired by the relevance of gender, age, height and weight, we propose an auxiliary-task learning framework, employing multiple relevant tasks to improve the performance of primary tasks. Specifically, gender prediction and age estimation are utilized as auxiliary tasks to assist primary tasks (i.e., height and weight estimation) learning via deep residual auxiliary block. Experiments are conducted on the public VIP-attributes datasets and our private VIPL-MumoFace- WH datasets. Our method outperforms the baseline methods of hard parameter sharing in multi-task learning, demonstrating the effectiveness of auxiliary-task learning framework for height and weight estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信