利用激励源特征识别婴儿哭声

A. Singh, J. Mukhopadhyay, S. B. S. Kumar, K. S. Rao
{"title":"利用激励源特征识别婴儿哭声","authors":"A. Singh, J. Mukhopadhyay, S. B. S. Kumar, K. S. Rao","doi":"10.1109/INDCON.2013.6726106","DOIUrl":null,"url":null,"abstract":"In this work, source features are explored for classifying infant cries. Different types of infant cries considered in this work are hunger, pain and wet-diaper. The various excitation source features explored in this work are source features namely epoch interval contour (EIC), epoch strength contour (ESC), epoch sharpness, slope of EIC and ESC features. In this work Gaussian Mixture Models (GMM) are used for classifying the different types of infant cries by utilizing the proposed features. Infant cry database collected under telemedicine project at IIT-KGP has been used for carrying out this study. The recognition performance using combination of evidences is found to be superior over individual systems.","PeriodicalId":313185,"journal":{"name":"2013 Annual IEEE India Conference (INDICON)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Infant cry recognition using excitation source features\",\"authors\":\"A. Singh, J. Mukhopadhyay, S. B. S. Kumar, K. S. Rao\",\"doi\":\"10.1109/INDCON.2013.6726106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, source features are explored for classifying infant cries. Different types of infant cries considered in this work are hunger, pain and wet-diaper. The various excitation source features explored in this work are source features namely epoch interval contour (EIC), epoch strength contour (ESC), epoch sharpness, slope of EIC and ESC features. In this work Gaussian Mixture Models (GMM) are used for classifying the different types of infant cries by utilizing the proposed features. Infant cry database collected under telemedicine project at IIT-KGP has been used for carrying out this study. The recognition performance using combination of evidences is found to be superior over individual systems.\",\"PeriodicalId\":313185,\"journal\":{\"name\":\"2013 Annual IEEE India Conference (INDICON)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Annual IEEE India Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCON.2013.6726106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2013.6726106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,源特征的探索分类婴儿哭声。在这项工作中考虑的不同类型的婴儿哭声是饥饿,疼痛和湿尿布。本工作探索的各种激发源特征是震源特征,即历元间隔轮廓(EIC)、历元强度轮廓(ESC)、历元锐度、EIC和ESC特征的斜率。在这项工作中,高斯混合模型(GMM)被用于分类不同类型的婴儿哭声利用提出的特征。使用印度理工学院kgp远程医疗项目收集的婴儿哭声数据库进行本研究。结合证据的识别性能优于单个系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infant cry recognition using excitation source features
In this work, source features are explored for classifying infant cries. Different types of infant cries considered in this work are hunger, pain and wet-diaper. The various excitation source features explored in this work are source features namely epoch interval contour (EIC), epoch strength contour (ESC), epoch sharpness, slope of EIC and ESC features. In this work Gaussian Mixture Models (GMM) are used for classifying the different types of infant cries by utilizing the proposed features. Infant cry database collected under telemedicine project at IIT-KGP has been used for carrying out this study. The recognition performance using combination of evidences is found to be superior over individual systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信